29 research outputs found

    A high energy output and low onset temperature nanothermite based on three-dimensional ordered macroporous nano-NiFe2O4

    Get PDF
    Three-dimensional ordered macroporous (3DOM) Al/NiFe2O4 nanothermite has been obtained by colloidal crystal templating method combined with magnetron sputtering processing. Owing to the superior material properties and unique 3DOM structural characteristics of composite metal oxides, the heat output of the Al/NiFe2O4 nanothermite is up to 2921.7 J g− 1, which is more than the values of Al/NiO and Al/Fe2O3 nanothermites in literature. More importantly, by comparison to the other two nanothermites, the onset temperature of 298.2 °C from Al/NiFe2O4 is remarkably low, which means it can be ignited more easily. Laser ignition experiment indicate that the synthesized Al/NiFe2O4 nanothermite can be easily ignited by laser. In addition, the preparation process is highly compatible with the MEMS technology. These exciting achievements have great potential to expand the scope of nanothermite applications

    3D ordered macroporous NiO/Al nanothermite film with significantly improved higher heat output, lower ignition temperature and less gas production

    Get PDF
    The performances of nanothermites largely rely on a meticulous design of nanoarchitectures and the close assembly of components. Three-dimensionally ordered macroporous (3DOM) NiO/Al nanothermite film has been successfully fabricated by integrating colloidal crystal template (CCT) method and controllable magnetron sputtering. The as-prepared NiO/Al film shows uniform structure and homogeneous dispersity, with greatly improved interfacial contact between fuel and oxidizer at the nanoscale. The total heat output of 3DOM NiO/Al nanothermite has reached 2461.27 J·g−1 at optimal deposition time of 20 min, which is significantly more than the values of other NiO/Al structural systems that have been reported before. Intrinsic reduced ignition temperature (onset temperature) and less gas production render the wide applications of 3DOM NiO/Al nanothermite. Moreover, this design strategy can also be readily generalized to realize diverse 3DOM structured nanothermites

    Public involvement in setting a national research agenda

    Get PDF
    <p>(A) Graphical map of the BLAST results showing nucleotide identity between <i>A</i>. <i>fasciata</i> mitogenome and 15 related species listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136297#pone.0136297.t001" target="_blank">Table 1</a>, as generated by the CGView comparison tool (CCT). CCT arranges BLAST result in an order where sequence that is most similar to the reference (<i>A</i>. <i>fasciata</i>) is placed closer to the outer edge of the map. The rings labelled 1 to17 indicate BLAST results of <i>A</i>. <i>fasciata</i> mitogenome against <i>A</i>. <i>chrysaetos</i>, <i>N</i>. <i>nipalensis</i>, <i>N</i>. <i>alboniger</i>, <i>S</i>. <i>cheela</i>, <i>A</i>. <i>monachus</i>, <i>B</i>. <i>lagopus</i>, <i>B</i>. <i>buteo</i>, <i>B</i>. <i>buteo burmanicus</i>, <i>A</i>. <i>soloensis</i>, <i>A</i>. <i>virgatus</i>, <i>A</i>. <i>gentilis</i>, <i>A</i>. <i>nisus</i>, <i>P</i>. <i>haliaetus</i>, <i>S</i>. <i>serpentarius</i>, <i>C</i>. <i>aura</i>, <i>P</i>. <i>badius</i>, and <i>S</i>. <i>leptogrammica</i>, respectively. (B) Nucleotide-based phylogenetic tree of 16 Accipitriformes species, with two Strigiformes birds as outgroups. This analysis is based on 13PCGs. Both ML and Bayesian analyses produced identical tree topologies. The ML bootstrap and Bayesian posterior probability values for each node are indicated.</p

    Numerical simulation of diagenetic evolution and porosity prediction in eastern area of Wushi Sag

    No full text
    The commercial oil fields discovered in the eastern area of Wushi Sag in recent years are mainly formed in a complex continental sedimentary environment, which was influenced by the tectonic movement, sedimentation and diagenesis.The reservoir in the oilfields of the study is characterized by a strong heterogeneity, complex reservoir seepage mechanism, which affects the development program Therefore, the analysis of the main controlling factors of the reservoir physical properties is extremely necessary, which can help the decision-makers to predict the sweet spot area theoretically and technically.In this paper, the method of numerical simulation of diagenetic evolution was adopted, in which the diagenesis index was obtained by the simulation of vitrinite reflectance, paleotemperature, smectite content in illite/smectite mixed layer, and quartz autogenesis increase based on the diagenetic environment parameter and chemical kinetic model.Moreover, the diagenetic stage and the lateral distribution of porosity were predicted based on the change of the diagenetic index.The results show that the diagenesis stage in the eastern area of Wushi Sag is the middle diagenesis stage A1-A2, and the diagenesis in the central sag is strong and gradually weaken.Combining the understanding of sedimentary and diagenesis, establishing the porosity prediction model and predicting it in horizon, the results indicate that: Following the source of sedimentary, the reservoir physical properties worsen with increasing burial depth, which is consistent with the change trend of diagenesis

    Anticoagulant and Antithrombotic Properties in Vitro and in Vivo of a Novel Sulfated Polysaccharide from Marine Green Alga <i>Monostroma nitidum</i>

    No full text
    Sulfated polysaccharides from marine algae have high potential as promising candidates for marine drug development. In this study, a homogeneous sulfated polysaccharide from the marine green alga Monostroma nitidum, designated MS-1, was isolated using water extraction and anion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that MS-1 mainly consisted of &#8594;3)-&#945;-l-Rhap-(1&#8594; and &#8594;2)-&#945;-l-Rhap-(1&#8594; residues, with additional branches consisting of 4-linked &#946;-d-xylose, 4-/6-linked d-glucose, terminal &#946;-d-glucuronic acid, and 3-/2-linked &#945;-l-rhamnose. Sulfate ester groups substituted mainly at C-2/C-4 of &#8594;3)-&#945;-l-Rhap-(1&#8594; and C-4 of &#8594;2)-&#945;-l-Rhap-(1&#8594; residues, slightly at C-2 of terminal &#946;-d-glucuronic residues. MS-1 exhibited strong anticoagulant activity in vitro and in vivo as evaluated by the activated partial thromboplastin time and thrombin time assays, and significantly decreased platelet aggregation. The anticoagulant activity mechanism of MS-1 was mainly attributed to strong potentiation thrombin by heparin cofactor-II, and it also hastened thrombin and coagulation factor Xa inhibitions by potentiating antithrombin-III. MS-1 possessed markedly thrombolytic activity evaluated by plasminogen activator inhibitior-1, fibrin degradation products, and D-dimer levels using rats plasma, and recanalization rate by FeCl3-induced carotid artery thrombosis in mice. MS-1 exhibited strong antithrombotic activity in vitro and in vivo evaluated by the wet weighs and lengths of thrombus, and thrombus occlusion time by electrically-induced carotid artery thrombosis in rats. These results suggested that MS-1 could be a promising marine drug for prevention and therapy of thromboembolic disease

    Quality Analysis and Evaluation of Different Batches of Pitaya Fruit (Hylocereus) in South China

    No full text
    ABSTRACTPitaya is a tropical and subtropical fruit; it can produce several batches fruit in one year. To find out the fruit quality differences between various batches in the same year in Guangzhou, South China, 11 pitaya varieties were used as the materials. Comparative analysis was performed between these varieties of each batch by 14 indexes, comprehensive evaluation and ranking were evaluated by the principal component analysis (PCA). Results showed that the red-peel and red-pulp pitaya has the longer fruit period and could obtain more batches fruits. By comparing the fruit quality of these 11 varieties in different batches: Except “Guanhuahong,” fruit weight is significant different between other 10 varieties. The edible rate of fruits from 2nd and 3rd batches is significantly higher than others. The hardness, total sugar, total acid, betalain, total phenol, and flavonoids were significant difference between batches. The PCA results indicated that in most varieties, the 1st, 8th, 9th batches are generally with heavier fruit, better color, harder and sweeter; more stable antioxidant compounds were shown in 6th, 7th, 8th, 9th batches; the 3rd, 4th, 5th, and 6th batches are smaller, softer, lower soluble sugar and higher titratable acid. Pitaya fruit quality and tastes from various batches are different in the same year, the climate may be the main factor. The fruits of 7th, 8th and 9th batches picking from Sep to Nov has better quality and higher economic value. This research has practical application value and could provide theoretical basis for the production of pitaya

    Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology

    No full text
    Saccharomyces boulardii preparations are promising probiotics and clinical agents for animals and humans. This work focused on optimizing the nutritional conditions for the production of S. boulardii in solid-state fermentation by using classical and statistical methods. In single-factor experiments, the S. boulardii production was significantly increased by the addition of glucoamylase and the optimal carbon and nitrogen sources were found to be soluble starch and NH4Cl, respectively. The effects of the glucoamylase, soluble starch and NH4Cl on S. boulardii production were evaluated by a three-level three-factor Box–Behnken design and response surface methodology (RSM). The maximal yeast count (4.50 ×109CFU/g) was obtained under the optimized conditions (198 U/g glucoamylase, 2.37% soluble starch and 0.9% NH4Cl), which was in a good agreement with the predicted value of the model. This study has provided useful information on how to improve the accumulation of yeast cells by RSM
    corecore