1,050 research outputs found

    2-[(5,7-Dibromo­quinolin-8-yl)­oxy]-N-(2-meth­oxy­phen­yl)acetamide

    Get PDF
    In the title compound, C18H14Br2N2O3, an intra­molecular N—H⋯N hydrogen bond forms an eight-membered ring. The dihedral angle between the planes of the quinoline system and the benzene ring is 41.69 (1)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and short Br⋯O inter­actions [3.0079 (19) Å]

    RETRACTED: Correlations of β-catenin, Ki67 and Her-2/neu with gastric cancer

    Get PDF
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the editor as the authors have plagiarized part of a paper that had already appeared in Acta Universitatis Medicinalis Anhui (2014, volume 49, issue 2, Pg:258–261, the link in CNKI: http://www.cnki.net/KCMS/detail/detail.aspx, the website of the Journal: http://www.aydxb.cn/publist.asp?second_id=2005). One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process

    A terahertz polarization insensitive dual band metamaterial absorber

    Get PDF
    Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric layer thickness of the metal–dielectric–metal structure, significantly high absorption can be obtained at specific resonance frequencies. Finite-difference time-domain modeling is used to design the structure of the absorber. The fabricated devices have been characterized using a Fourier transform IR spectrometer. The experimental results show two distinct absorption peaks at 2.7 and 5.2 THz, which are in good agreement with the simulation. The absorption magnitudes at 2.7 and 5.2 THz are 0.68 and 0.74, respectively

    Field emission from randomly oriented ZnO nanowires

    No full text
    Randomly oriented zinc oxide (ZnO)nanowires with different diameters were synthesized on a large scale on silicon substrates through a simple physical evaporation method. The nanowires exhibit stable and uniform electron field emission, and the turn-on field reduces with the diameter decreasing. The perfect field emission ability of the ZnOnanowires may be related to their rough surface and sharp curvature. Considering the efficient synthesis method and their excellent field emission characteristics, the authors expect that the randomly oriented ZnOnanowire films could have a promising industrial prospect as economic emitters for flat panel displays.This project is financially supported by the National Natural Science Foundation of China No. 50502005 and Beijing Natural Science Foundation No. 1062008. One of the authors Y.Q.C. is supported by the Beijing Novel Program

    N-Phenyl­anthranilic anhydride

    Get PDF
    The complete mol­ecule of the title compound, C26H20N2O3, is generated by crystallographic twofold symmetry, with the central O atom lying on the rotation axis. The conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. The dihedral angle between the inner and outer aromatic ring planes is 61.12 (5)°

    Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction

    Get PDF
    Epilepsy is the second common neurological disorder after headache, accurate and reliable prediction of seizures is of great clinical value. Most epileptic seizure prediction methods consider only the EEG signal or extract and classify the features of EEG and ECG signals separately, the improvement of prediction performance from multimodal data is not fully considered. In addition, epilepsy data are time-varying, with differences between each episode in a patient, making it difficult for traditional curve-fitting models to achieve high accuracy and reliability. In order to improve the accuracy and reliability of the prediction system, we propose a novel personalized approach based on data fusion and domain adversarial training to predict epileptic seizures using leave-one-out cross-validation, which achieves an average accuracy, sensitivity and specificity of 99.70, 99.76, and 99.61%, respectively, with an average error alarm rate (FAR) of 0.001. Finally, the advantage of this approach is demonstrated by comparison with recent relevant literature. This method will be incorporated into clinical practice to provide personalized reference information for epileptic seizure prediction

    rSeqTU—A Machine-Learning Based R Package for Prediction of Bacterial Transcription Units

    Get PDF
    A transcription unit (TU) is composed of one or multiple adjacent genes on the same strand that are co-transcribed in mostly prokaryotes. Accurate identification of TUs is a crucial first step to delineate the transcriptional regulatory networks and elucidate the dynamic regulatory mechanisms encoded in various prokaryotic genomes. Many genomic features, for example, gene intergenic distance, and transcriptomic features including continuous and stable RNA-seq reads count signals, have been collected from a large amount of experimental data and integrated into classification techniques to computationally predict genome-wide TUs. Although some tools and web servers are able to predict TUs based on bacterial RNA-seq data and genome sequences, there is a need to have an improved machine learning prediction approach and a better comprehensive pipeline handling QC, TU prediction, and TU visualization. To enable users to efficiently perform TU identification on their local computers or high-performance clusters and provide a more accurate prediction, we develop an R package, named rSeqTU. rSeqTU uses a random forest algorithm to select essential features describing TUs and then uses support vector machine (SVM) to build TU prediction models. rSeqTU (available at https://s18692001.github.io/rSeqTU/) has six computational functionalities including read quality control, read mapping, training set generation, random forest-based feature selection, TU prediction, and TU visualization

    Molecular characterization, spatiotemporal expression patterns of fatty acid elongase (elovl8) gene, and its transcription changes in response to different diet stimuli in yellow catfish (Pelteobagrus fulvidraco)

    Get PDF
    Elongase of very long-chain fatty acid 8 (Elovl8) is a new member identified in the Elovl family that is involved in the synthesis of highly unsaturated fatty acids (HUFAs). However, the evolutionary and physiological roles of this enzyme are still largely unknown. In the present study, the elovl8 gene was identified and characterized from yellow catfish Pelteobagrus fulvidraco, and then its evolutionary and molecular characteristics as well as transcriptional changes in response to various nutritional status were determined. Results showed that the open reading frame (ORF) of elovl8 was 795 bp in length, encoding a protein of 264 amino acids. Multiple sequences alignment showed that the yellow catfish Elovl8 was highly conserved with other homologs in teleosts, sharing similar structural characteristics (including six conserved transmembrane α-helical domains, four conserved elongase motifs, and three highly conserved cysteine residues). Meanwhile, comparisons of genetic synteny confirmed that the elovl8 gene identified from the yellow catfish was the homolog of elovl8b in other teleosts, and thus, the elovl8a gene was lost in the genome of the yellow catfish. Gene structure analysis revealed that the elovl8b gene contained eight exons and seven introns, which was highly conserved in teleosts, implying the functional conservation among various fish species. Tissue distribution analysis detected by real-time quantitative PCR (RT-qPCR) showed that the elovl8 gene was extensively expressed in all detected tissues except eyes, with high expression levels in the intestine and liver. Temporal expression analysis revealed that the expression level of elovl8 was stably expressed in the early 12 h after fertilization, and then dramatically decreased at 24, 48, 72, and 96 h after fertilization, implying that elovl8 is required for HUFA biosynthesis in the early development stages. Functional experiments showed that the expression of the elovl8 gene was stimulated after feeding with egg yolk but was not obviously affected after feeding with halogenated worms, indicating that diets full of HUFAs can inhibit the expression of elovl8 in yellow catfish. Our findings will help us to better understand the evolutionary and functional characteristics of elovl8 in teleosts, and lay a solid basis for investigating the regulation mechanism of HUFA biosynthesis
    • …
    corecore