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Epilepsy is the second common neurological disorder after headache, accurate

and reliable prediction of seizures is of great clinical value. Most epileptic seizure

prediction methods consider only the EEG signal or extract and classify the

features of EEG and ECG signals separately, the improvement of prediction

performance from multimodal data is not fully considered. In addition, epilepsy

data are time-varying, with differences between each episode in a patient,

making it difficult for traditional curve-fitting models to achieve high accuracy

and reliability. In order to improve the accuracy and reliability of the prediction

system, we propose a novel personalized approach based on data fusion and

domain adversarial training to predict epileptic seizures using leave-one-out

cross-validation, which achieves an average accuracy, sensitivity and specificity

of 99.70, 99.76, and 99.61%, respectively, with an average error alarm rate (FAR) of

0.001. Finally, the advantage of this approach is demonstrated by comparison with

recent relevant literature. This method will be incorporated into clinical practice

to provide personalized reference information for epileptic seizure prediction.
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1. Introduction

Epilepsy is a chronic disorder in which abnormal neuronal discharges occur suddenly,
causing temporary brain dysfunction. According to the World Health Organization (WHO),
there are approximately 70 million people with epilepsy worldwide, and epilepsy has
become the second common neurological disorder after headache (Rasheed et al., 2021).
In addition, before an epileptic seizure occurs, there are abnormalities in the EEG
(electroencephalogram) and ECG (electrocardiogram) that make it possible to predict
epileptic seizures (Rakhade and Jensen, 2009). If the seizure can be predicted in advance,
there is enough time for the medical staff to intervene with the patient’s medication or to
apply electrical stimulation treatment to protect the patient from side effects.

Electroencephalogram is a method of recording brain activity using electrophysiological
indicators (Zhang et al., 2020) and is the overall reflection of the electrophysiological activity
of brain nerve cells in the cerebral cortex. In recent years, the use of EEG for seizure detection
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and prediction has received widespread attention from the
academic community. Based on the dynamic characteristics of the
EEG signal, brain activity in epileptic situations can be classified
into four phases (Jana and Mukherjee, 2021a,b): preictal, ictal,
postictal, and interictal. Studies have shown that the transition
from interictal to ictal state in patients with epilepsy is not
instantaneous, but rather goes through a transitional period,
so accurate and efficient identification of the preictal state
becomes the key to epileptic seizure prediction (Yuan et al.,
2018). According to previous research, ECG signal analysis can
help predict epileptic seizures. Some studies found significant
changes along with the preictal parts of ECG signals by
analyzing the parameters of heart rate variability and comparing
them statistically in the preictal and interictal parts. These
changes indicate high sympathetic activity and occur especially
5 min before the onset of seizures. Therefore, ECG signal
analysis can be a beneficial tool for predicting epileptic seizures
(Seifi et al., 2022).

The pathogenesis of epilepsy is complex and the types of
epileptic seizures are diverse. In addition, since the patient’s status
during each seizure cycle is different, such as physical condition,
pathogenesis, seizure intensity, seizure type, environmental
influences, mood, etc., these multiple factors lead to the preictal and
interictal periods before each ictal having different characteristics.
Therefore, in the same patient, the signal characteristics of the
preictal period and the interictal period preceding each ictal may
be the same or different (Babb et al., 1987; Fisher et al., 2017).

Most of the existing epileptic seizure prediction methods focus
on the patient-specific scenario (Detti et al., 2018) which refers
to predicting a patient’s epileptic seizure by learning from his
own historical records, this method is easy to implement and
has high prediction accuracy, and is favored by a wide range of
researchers, but the accuracy is unstable, that is, large differences
in results between patients, so the traditional methods need
further improvement.

To eliminate the negative effect of data distribution shift,
DANN (domain-adversarial training of neural networks)
(Ganin et al., 2016; Yu et al., 2019; Matsuura and Harada,
2020) used marginal distribution alignment to eliminate data
differences between subjects, and MADA (multi-adversarial
domain adaptation) (Pei et al., 2018) used conditional distribution
alignment to achieve better invariant feature learning. However,
these proposed methods were only for eliminating differences
between patients and did not address the negative effect of multiple
seizures in a patient to predict epilepsy, resulting in unstable
prediction results on the patient-specific scenario.

To further improve the prediction accuracy and reliability, data
fusion is an effective way; in actual EEG acquisition, simultaneous
acquisition of ECG data can meet the requirement of data
fusion; in addition, there is increasing evidence that the nervous
system plays an important role in regulating cardiac function,
and seizure-onset arrhythmias have been shown to be the result
of autonomic imbalance induced by seizure activity. Studies have
shown that seizures can be predicted using the ECG (Moridani
and Farhadi, 2017; Ufongene et al., 2020; Costagliola et al., 2021),
so combining the EEG with the ECG signal not only improves
the accuracy of seizure prediction, but also allows better detection
and understanding of brain-heart interactions for monitoring and
treatment of potential arrhythmias.

Deep learning (DL), a branch of machine learning (ML), has
become increasingly popular in recent years. DL has been shown to
outperform traditional ML in many areas, and through the efforts
of researchers, the DL method has been extensively applied to the
seizure prediction task and has achieved promising results (Jana
and Mukherjee, 2021a,b; Usman et al., 2021; Zhang et al., 2021).
However, most of the current methods use only EEG signals for
seizure prediction and do not consider the effect of multimodal data
on prediction performance.

In studies using simultaneous EEG and ECG signals for
epileptic seizure prediction, Phomsiricharoenphant et al. (2014)
used the Hilbert Huang Transform (HHT) to extract the
instantaneous mean frequency from EEG and the R-R interval from
ECG simultaneously for epileptic seizure prediction independently,
the possibility of using EEG and ECG for seizure prediction
was first explored; Hoyos-Osorio et al. (2016) used EEG features
extracted by discrete wavelet transform and ECG features extracted
by calculating heart rate changes to predict epileptic seizures
independently; Billeci et al. (2019) used a combination of EEG
and ECG to extract synchronous mode and time-frequency
features from EEG, and extracted inter-beat (RR) information
from ECG using recurrence quantification analysis to predict
epileptic seizures independently, and used SVM classifier to classify
preictal and interictal phases by combining features extracted
from both signals. Most of these methods analyze the EEG and
ECG data independently and derive the final prediction results
independently, without sufficiently considering the combined
EEG and ECG data for seizure prediction, and the prediction
performance could be further improved.

Therefore, in order to improve prediction accuracy and
reliability, eliminate the negative impact of data differences of
each seizure in a patient, it is necessary to develop a personalized
epileptic prediction approach with data fusion and adversarial
training method for specific patient.

The rest of this paper is organized as follows. In section “2.
Scalp EEG dataset and methods,” the Scalp EEG dataset and the
epileptic seizure prediction method based on data fusion and
adversarial training is described in details. In section “3. Results
and discussion,” results and discussion on benchmark dataset are
provided. In the end, some conclusions are given in section “4.
Conclusion.”

2. Scalp EEG dataset and methods

2.1. Scalp EEG data

The proposed approach is evaluated on a benchmark dataset
published by the University of Siena, Italy. This dataset consists of
9 males (36–71), 5 females (20–58), collected from scalp electrodes
using the international 10–20 system at 512 Hz sampling rate, most
of the data include EEG and ECG signals simultaneously. Personal
information and epileptic seizure information are shown inTable 1.

For each patient, the minimum length of the preictal and
interictal periods is set at 5 min, the preictal and interictal periods
before each seizure as a unit and recorded as an episode; we
evaluated patients who had at least three seizures in the EEG
recordings. This is because less than three preictal and interictal
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TABLE 1 Siena scalp EEG dataset information.

Patient_id Age_years Gender Seizure EEG channel Number seizures Time(s)

PN00 55 Male IAS 29 5 198

PN01 46 Male IAS 29 2 809

PN03 54 Male IAS 29 2 752

PN05 51 Female IAS 29 3 359

PN06 36 Male IAS 29 5 722

PN07 20 Female IAS 29 1 523

PN09 27 Female IAS 29 3 410

PN10 25 Male FBTC 20 10 1,002

PN11 58 Female IAS 29 1 145

PN12 71 Male IAS 29 4 246

PN13 34 Female IAS 29 3 519

PN14 49 Male WIAS 29 4 1,408

PN16 41 Female IAS 29 2 303

PN17 42 Male IAS 29 2 308

periods cause an overfitting problem in training. Taking all these
restrictions into account, eight patients are available, such as P00,
P05, P06, P09, P10, P12, P13, and P14.

2.2. Epileptic seizure prediction method
based on data fusion and adversarial
training

The proposed epileptic seizure prediction method explores
the data fusion strategy of EEG and ECG signal and eliminates
the negative impact of data difference of each seizure in a
patient. It consists of three sections (Figure 1): (1) EEG feature
extraction and classification module; (2) ECG feature extraction
and classification module; and (3) decision level fusion module.
The EEG feature extraction and classification module is composed
of a long short-term memory network (LSTM) and four layers
of 1-D CNN, and the ECG feature extraction and classification
module is composed of five layers of 2-D CNN, the decision-
level fusion module combines the output results of the EEG and
ECG classification modules according to dynamic weight, so that
the EEG classification module and the ECG classification module
achieve prediction performance complementarity. In addition,
to eliminate the time-varying of each episode in some epilepsy
patients, the adversarial training is used, which increases the ability
of extracting the invariant features.

2.2.1. Data pre-processing
Data pre-processing is an important step before the feature

extraction stage, and perfect data pre-processing will guarantee
the high accuracy in the later stage; in pre-processing, firstly,
useless electrodes must be removed, followed by filtering, because
the frequency range from 0.1 to 70 Hz contains most of the
epilepsy-related information (Das et al., 2020), we set the bandpass
filter range as follows: low-frequency filtering is set to 0.1 Hz,
high frequency filtering is set to 70 Hz, and a notch filter is set

from 48 to 52 Hz to eliminate power frequency interference; in
addition, to improve the accuracy of the algorithm, we use min-max
regularization technology (Sola and Sevilla, 1997) to regularize the
data, the data is between 0 and 1 after regularization. The min-max
regularization method is shown below:

Xnormal=
Xi−Xmin

Xmax−Xmin
(1)

Where,Xi is the original data, Xnormal is the data after
regularization, Xmin and Xmax is the minimum and maximum values
of the original data. After regularizing the EEG data, all channel
data are selected (30 channels are included in the Siena scalp
EEG dataset after removal of useless electrodes, of which 29 EEG
channels, 1 ECG channel), to facilitate later feature extraction and
classification, the EEG and ECG data are segmented separately; the
data are segmented using moving window analysis, with a window
length of 1 s and 0% overlapping; For labeling the data segment,
when the data segments are in the interictal state, the segment data
is labeled as 0, and when the data segments are in the preictal state,
the segmented data is labeled as 1; For labeling each episode in a
patient, the episodes are labeled from 0 to N-1 (N is the number
of episodes in a patient). Finally, the EEG dataset and the ECG
dataset are formed.

In order to extract the spectral characteristics of ECG data,
we adopt a continuous wavelet transform, the wavelet scale is 32
and the mother wavelet is “mexh,” so as to obtain the effective
characterization signal of the original signal in the frequency
domain (Shukla et al., 2022), and the continuous wavelet transform
is shown below:

WTf (a, b) =
1
√

a

∫
+∞

−∞

f (t) 9
∗(

t − b
a

)dt (2)

Where, WT represents the wavelet transform, f (t) is the original
signal; a (a>0), b are scale parameters and translation parameters,
respectively; 9((t−b)/a) is sub-wave, it is the scaling and translation
of the mother wavelet.
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FIGURE 1

Flowchart of the epileptic seizure prediction model. A block diagram showing the components of the prediction model, in which the
electroencephalogram (EEG) and electrocardiogram (ECG) signals are feature extracted and classified, respectively, and then the classification
results are post-processed by a decision-level fusion strategy to obtain the final prediction results.

After pre-processing, the pre-processed data is fed into the
feature extraction and classification module for feature extraction
and classification.

2.2.2. Feature extraction
2.2.2.1. Bi-LSTM+1D CNN network

We use the Bi-LSTM network (Gers et al., 1999; Tsiouris
et al., 2018; Cheng et al., 2021) to extract features from the EEG
data. Bi-LSTM network is a kind of RNN, where each block is
composed of two LSTM blocks, respectively, processing forward
and backward EEG signal, the forward module processes the time
feature vector along the positive sequence of the time series, while
the backward transmission block processes the same time feature in
the reverse sequence of the time series. The output of each block is
a combination of processing results in two opposite directions, the
Bi-LSTM network not only processes the current feature extraction,
but also extracts future features, so it can effectively improve
the recognition accuracy. Bi-LSTM+1D CNN network is mainly
to extract features of EEG data, then the extracted features are
classified by the two full connection layer networks.

2.2.2.2. 2D CNN network

Since the ECG signal does not change significantly in the time
domain, there are subtle feature changes in the frequency domain,
therefore the feature extraction and classification of the ECG data
adopts 2D image format, due to the convolution, pooling and other
operations contained in the CNN network (Khan et al., 2018; Liu
et al., 2020), it is very applicable to process 2D image, so the
feature extraction of the ECG signal adopts the 2D CNN network.
Finally, the two full connection layers are used to classify the
extracted ECG features.

2.3. Data fusion strategy

Data fusion is the combination of data and information
from multi-sensor information sources, the purpose is to timely

mine hidden information from big data, so how to reasonably
and effectively integrate and intelligently process big data is a
problem of data fusion. According to different stages of data
fusion, data fusion is divided into three categories: data-level fusion,
feature-level fusion and decision-level fusion (Balasubramaniam
and Ananthi, 2014; Javed et al., 2014; Versaci et al., 2022).

For data-level fusion, the pre-processed raw data from several
different sources are combined according to certain rules, e.g.,
the EEG signal and the ECG signal are combined; note that the
combined data must keep the sampling rate consistent and the
data time aligned.

For feature level fusion, to alleviate the problem of
inconsistencies between the original data in each mode, the
representation of the features can be taken separately from each
mode, and then the extracted feature is combined to form a new
feature, which is provided for later data classification.

In decision level fusion, the DL model trains the data from
different modes and then fuses the output results for later data
classification; decision level fusion mainly uses rules such as the
mean method, voting method and ensemble learning method.

In our work, to further improve the performance of the
DL model, we proposed a novel network consisting of two
branches (EEG feature extraction and classification branch, ECG
feature extraction and classification branch), each branch is an
independent network, and the output result of the network is the
weighted average of each branch (Saranya et al., 2021):

y =
L∑

i=1

wi di (3)

Where, wi is the weight, w1 +w2 +...+wL=1, L is the number of
branch network (L = 2), di is the prediction results of the ith
branch network. For weighted averages wi , can be fixed to 0.5,
however, after such a fixed setting, the classification error rate of the
branch network cannot affect the weights of the branch, resulting
in no improvement in the classification accuracy, so we use the
classification error rate of the branch to dynamically adjust the
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weight of the branch, the weights are calculated as follows:

w1 = 1+ arctan(
1− err1

err1
) (4)

w2 = 1+ arctan(
1− err2

err2
) (5)

W1 =
w1

w1 + w2
(6)

W2 =
w2

w1 + w2
(7)

Where, err1 and err2 are the classification error rate of the two
branch networks, w1 andw2 are the weights of each branch network,
W1 and W2 are the normalized value of w1 andw2 , W1+W2=1. By
dynamically weighting the output of each branch, a network model
with better performance, stronger generalization ability, and higher
stability is constructed.

2.4. Adversarial training

For a particular patient, the EEG and ECG data are time-
varying, resulting in each episode being different, in order to
eliminate the negative impact of data distribution shift between
episodes, we adopt adversarial training (Ganin et al., 2016), which
aims to improve the generalization ability and prediction accuracy
of the model. For the EEG data, the features are extracted by feature
extraction networks Gf 1 , then, the features are fed into the episode
discriminator 1; For the ECG data, the features are extracted by
feature extraction networks Gf 2 , then, the features are fed into the
episode discriminator 2; the losses of episode discriminator 1 and 2
are as follows:

Ld_eeg =
1
N

∑
xeeg_i∈Deeg

L(Gd_eeg(Gf 1(xeeg_i)), di) (8)

Ld_ecg =
1
N

∑
xecg_i∈Decg

L(Gd_ecg(Gf 2(xecg_i)), di) (9)

Where, L is the cross entropy loss function, Gf 1 is the EEG
feature extraction network, Gf 2 is the ECG feature extraction
network, Gd_eeg is the EEG episode discriminator, Gd_ecg is the ECG
episode discriminator, di is the episode label, xeeg_i and xecg_i are the
EEG and ECG data sample, Deeg and Decg are the dataset of EEG
data and ECG data in a patient, N is the number of samples.

2.5. Training details

The proposed approach adopts data fusion strategy, the loss
function of classifier is:

Lc =
1
N

∑
xeeg−i∈Deeg;ecg−i∈Decg

L(M(Gc1(Gf 1(xeeg−i)), (10)

Gc2(Gf 2(xecg−i))), yi)

Where, L is the cross entropy loss function, Gc1 is the EEG
category classifier, Gc2 is the ECG category classifier, yi is the
category label, and M is data fusion strategy:

M =W1 ∗ Gc1(Gf 1(xeeg_i)+W2 ∗ Gc2(Gf 2(xecg_i) (11)

Where, W1 and W2 are weights of each branch which can be
learnt by the training.

We propose an adversarial training strategy to jointly train all
the loss functions:

Lsum = Lc − λ× (Ld_eeg + Ld_ecg) (12)

Where, λ = 0.1; During optimization, episode discriminator
1 and episode discriminator 2 are trained by a special layer
called Gradient Reversal Layer (GRL), which connects
feature extraction network and episode discriminator, this
GRL is omitted during forward propagation, the gradient
is reversed in backpropagation. Finally, we search the
optimal parameters ∧

θf 1
∧

θf 2
∧

θc1
∧

θc2
∧

θ
d_eeg

∧

θ
d_ecg

∧

θ
M

to meet the following

requirements:

(
∧

θ
f 1

,
∧

θ
f 2

,
∧

θ
c1
,
∧

θ
c2
,
∧

θ
M

) = arg min
θf 1,θf 2,θc1,θc2,θM

Lsum(θf 1, θf 2, (13)

θc1, θc2, θd_eeg, θd_ecg)

(
∧

θ
d_eeg

,
∧

θ
d_ecg

) = arg max
θd_eeg ,θd_ecg

Lsum(θf 1, θf 2, θc1, θc2, θd_eeg, θd_ecg)

(14)

2.6. Evaluation

Leave-one-out cross-validation is used in the training
and test phases, where the number of training sessions
for a given patient is equal to the number of episodes.
During each training session, except for one episode which
is used in the test, all other episodes participated in the
training process, and the process is repeated by changing the
patient’s episode.

2.6.1. Experimental environment
The experimental environment is: Windows 10 operation

system, the program language is Python 3.7.4, and the DL
framework is Pytorch (its version is 11.1). The graphics card is:
GeForce RTX 3060.

2.6.2. Experimental parameters
This experiment uses two independent training branches,

including LSTM+CNN network for EEG data and 2-
D CNN network for ECG data, training epoch is set to
100 times and batch size is set to 128. Cross entropy loss
function and Center loss function were combined as the loss
function, the model uses the Adam optimizer and learning
rate is set to 0.001, center loss function is optimized using
the SGD optimizer, and learning rate is set to 0.05. For
the setting of hyperparameters in the experiment, we use
grid search method.
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2.6.3. Evaluate metrics
The experiment used accuracy (ACC), sensitivity (SN), and

specificity (SP) to quantify the performance of the algorithm
(Prasanna et al., 2021).

ACC =
TP + TN

TP + TN + FP + FN
(15)

SN =
TP

TP + FN
(16)

SP =
TN

TP + TN
(17)

Where, TP (True Positive): the sample that is positive is judged
to be positive, TN (True Negative): the sample that is negative is
judged to be negative, FP (False Positive): the negative sample is
considered positive, FN (False Negative): the sample that is positive
is judged to be negative.

To evaluate the prediction accuracy of the forecasting system,
the false alarm rate is measured as follows (Cheng et al., 2021):

FAR =
Nalarm

Nwo
(18)

Where, Nalarm represents the number of time windows for
alarms in the interictal, Nwo represents the number of time
windows in interictal.

3. Results and discussion

3.1. Results of the proposed approach

To evaluate the advantages and disadvantages of the proposed
approach, we selected eight patients with a number of epileptic
seizures greater than or equal to three from the Siena scalp EEG
dataset, the results of each epilepsy patient are shown in Table 2.

Since there is very little literature on seizure prediction using
the Siena scalp EEG dataset, we set the preictal period length to
T = 300 s (5 min), the same preictal period length setting proposed
in the literature (Detti et al., 2020), and compared with the literature
(Phomsiricharoenphant et al., 2014; Hoyos-Osorio et al., 2016;
Billeci et al., 2019; Detti et al., 2020). The comparison results of the

TABLE 2 Test results on Siena scalp dataset.

Patient
number

ACC (%) SN (%) SP (%) FAR

P00 99.39 99.62 98.89 0.004

P05 100 100 100 0

P06 99.63 99.34 99.82 0.002

P09 99.12 99.45 98.97 0.002

P10 100 100 100 0

P12 100 100 100 0

P13 100 100 100 0

P14 99.42 99.69 99.21 0.002

Average 99.70 (± 0.35) 99.76 (± 0.27) 99.61 (± 0.5) 0.001 (± 0.037)

related methods are shown in Table 3. The results show that the
proposed approach has an advantage in all test metrics.

In order to compare performance with other approaches,
we used t-test in the case of normal distributions to
calculate the p-values of the accuracy between literatures
(Phomsiricharoenphant et al., 2014; Hoyos-Osorio et al., 2016;
Billeci et al., 2019; Detti et al., 2020) and the proposed approach,
the results are 1.34E-09, 2.22E-08, 5.94E-08, 0.029, respectively, all
less than 0.05, therefore, the approach in this paper significantly
outperforms the contrastive literatures.

3.2. Comparison of the methods of data
fusion

To further demonstrate the superiority of the decision-level
fusion method proposed in this paper, we compare the performance
of the data-level fusion and feature-level fusion approaches. The
two approaches are shown in Figures 2, 3.

The comparison results of the three data fusion approaches are
shown in Table 4.

In order to compare performance with other data fusion
approaches, we used t-test in the case of normal distributions to
calculate the p-values of the accuracy between data-level/feature-
level fusion approach and the proposed approach, the results are
8.29E-08, 1.92E-09, respectively, all less than 0.05, therefore, the
approach in this paper significantly outperforms the contrastive
data fusion approaches.

Through comparison, it can be seen that the effect of the
decision-level fusion approach is optimal, followed by the data-level
fusion approach, the feature-level fusion approach is the worst,
analyze its reasons, there are three reasons, first, EEG and ECG
signals can be used as complementary to each other in epileptic
seizure prediction, through independent feature extraction of EEG
and ECG signals, the shortcomings of the extraction features of a
single network can be effectively avoided; second, for the feature-
level fusion approach, the two independent branch networks are
used for EEG and ECG signal feature extraction, but the separately
extracted feature dimensions are limited by artificial settings, the
specific setting is still unknown how much is the best state, so
the result is the worst; third, for the data level fusion approach,
the EEG and ECG data are combined in the same mode, then the
feature extraction is performed by a unified network, which ignores
the diversity of the data, resulting in the information from the
multimodal data is not extracted and processed, so the classification
effect of the data level fusion approach is inferior to that of the
decision level fusion approach.

3.3. Comparison of the fixed weight
setting and the dynamic weight setting

The proposed approach adopts the dynamic setting of the
output weights of each branch network, which is based on the error
rate of each branch. To verify the superiority of the dynamic weight
method, the output weights of the two branches are fixed at 0.5, and
the average accuracy, average sensitivity, average specificity, and
average error alarm rate are 93.35%, 94.46%, 92.98%, and 0.026,
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TABLE 3 Comparison results of related methods.

Methods ACC (%) SN (%) SP (%) FAR (%)

Phomsiricharoenphant et al., 2014 88.32 (± 2.28) 86.52 (± 2.40) 90.72 (± 2.43) 0.085 (± 0.93)

Hoyos-Osorio et al., 2016 90.89 (± 2.19) 91.36 (± 1.69) 89.70 (± 2.58) 0.068 (± 0.91)

Billeci et al., 2019 91.32 (± 2.56) 94.26 (± 1.14) 86.58 (± 3.73) 0.057 (± 0.44)

Detti et al., 2020 100 (± 0) 98.88 (± 2.01) – –

Ours 99.70 (± 0.35) 99.76 (± 0.27) 99.61 (± 0.5) 0.001 (± 0.037)

FIGURE 2

Flowchart of the data-level fusion epileptic seizure prediction model. This method first combines EEG and ECG signals, and then performs feature
extraction and classification.

FIGURE 3

Flowchart of the feature-level fusion epileptic seizure prediction model. This method performs pre-processing and feature extraction from EEG and
ECG signals independently, and then fuses and classifies the features of the EEG and ECG signals.

TABLE 4 Comparison results of three data fusion methods.

Data fusion method ACC (%) SN (%) SP (%) FAR

Data-level fusion 95.33 (± 1.17) 96.12 (± 1.50) 92.19 (± 1.30) 0.018 (± 0.69)

Feature-level fusion 92.31 (± 1.50) 90.35 (± 2.22) 94.16 (± 0.70) 0.032 (± 0.80)

Decision-level fusion 99.70 (± 0.35) 99.76 (± 0.27) 99.61 (± 0.5) 0.001 (± 0.037)

respectively. When compared with the proposed approach, the
approach of dynamically setting the output weight of each branch
is better than the approach of fixedly setting the output weight of
the branch network. The comparison result of the two approaches
is shown in Figure 4.

3.4. Comparison of results of adversarial
training and non-adversarial training

In order to eliminate the negative impact of data difference of
each episode in a patient, we adopt adversarial training to improve
the generalization ability of the network, as a comparison method,
the GRL and domain adversarial network are removed, the average

accuracy, average sensitivity, average specificity and average FAR
of eight epilepsy patients were 95.68%, 93.44%, 97.21% and 0.015,
respectively, and by comparing with the proposed approach, the
result shows that using adversarial training has better prediction
performance. The comparison result of the two approaches is
shown in Figure 5.

3.5. Advantages and limitations

This approach has the following advantages:

1. The proposed approach adopts the decision level data
fusion strategy, the results of EEG and ECG data
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FIGURE 4

Comparison results with and without dynamic weight setting.

FIGURE 5

Comparison results with and without adversarial training.

classification are combined, in the combining process,
the classification error rate of each branch is used to
calculate the weight, the branch with low error rate is set
by a high weight, the branch with high error rate is set
by a low weight, so that the network branch with low
classification error rate plays a leading role in prediction,
and the result of the network branch with high prediction
error rate is used as a supplement, thus improving the
prediction accuracy.

2. Since epilepsy data are time-varying, with differences
between each seizure in a patient, this approach adopts
domain adversarial training to extract the invariant
features, thereby improving the generalization ability of
the model.

This approach has limitations:
The proposed approach requires a dataset with both EEG and

ECG signals, but there are few public datasets that meet this
condition. The performance of the approach on multiple datasets
cannot be demonstrated, so it is necessary to collect epilepsy

data with both EEG and ECG signals from the local hospital for
the demonstration.

4. Conclusion

In this work, a novel patient-specific approach to seizure
prediction based on data fusion and adversarial training is
proposed. To improve the prediction accuracy and robustness of
the network, the data fusion strategy is adopted. To eliminate
the instability of the network caused by the negative impact of
data differences of each episode in a patient, domain adversarial
training is adopted to extract the invariant features of a specific
patient. We use the Siena scalp EEG dataset and leave-one-out
cross-validation strategy, the average accuracy, average sensitivity,
average specific and average FAR on the 8 epilepsy patients are
calculated, our results outperform the competitive state-of-the-art
baselines. In addition, the advantages of this approach are verified
by comparing it with different data fusion methods and the use of
domain adversarial training methods.
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For future work, it is necessary to use techniques such as
domain generalization to reduce the differences between patients
for the clinical application of epileptic seizure prediction, and to
develop a portable system that includes a wearable electrode cap
and a smart device for epileptic seizure prediction.
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