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A transcription unit (TU) is composed of one or multiple adjacent genes on the same 
strand that are co-transcribed in mostly prokaryotes. Accurate identification of TUs is a 
crucial first step to delineate the transcriptional regulatory networks and elucidate the 
dynamic regulatory mechanisms encoded in various prokaryotic genomes. Many genomic 
features, for example, gene intergenic distance, and transcriptomic features including 
continuous and stable RNA-seq reads count signals, have been collected from a large 
amount of experimental data and integrated into classification techniques to computationally 
predict genome-wide TUs. Although some tools and web servers are able to predict TUs 
based on bacterial RNA-seq data and genome sequences, there is a need to have an 
improved machine learning prediction approach and a better comprehensive pipeline 
handling QC, TU prediction, and TU visualization. To enable users to efficiently perform 
TU identification on their local computers or high-performance clusters and provide a 
more accurate prediction, we develop an R package, named rSeqTU. rSeqTU uses a 
random forest algorithm to select essential features describing TUs and then uses support 
vector machine (SVM) to build TU prediction models. rSeqTU (available at https://
s18692001.github.io/rSeqTU/) has six computational functionalities including read quality 
control, read mapping, training set generation, random forest-based feature selection, 
TU prediction, and TU visualization.
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INTRODUCTION

The gene expression and regulation in bacteria use different machinery from eukaryotic organisms. 
Operon has been defined as a set of genes controlled by a single promoter are first co-transcribed 
into one mRNA molecule, and then the mRNA molecule is translated into multiple proteins 
(Jacob et  al., 1960). Operationally, an operon uses a single promoter to regulate the set of 
genes. Functionally, the set of genes in the operon encodes proteins with related biological 
functions. The lac operon in Escherichia coli is a typical operon that consists of a promoter, 
an operator, and three structural genes. The three genes, lacZ, lacY, and lacA, are co-transcribed 
into one mRNA transcript and are subsequently translated into three proteins, β-galactosidase, 
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β-galactoside permease, and Galactoside acetyltransferase. The 
lac operon is responsible for the transport and metabolism of 
lactose in many enteric bacteria. The discovery of the lac 
operon won the Nobel Prize in Physiology by Jacob and Monod 
in 1965 (Jacob et  al., 1960).

Recently, many works revealed bacterial genes are not 
transcribed only in single operons but may be  dynamically 
co-transcribed into mRNAs with different gene sets under 
different growth environments or conditions (Yan et  al., 2018). 
Each of the co-transcribed gene set is called transcription units 
(TUs). The concept of TU is analogical to alternative spliced 
protein isoforms in eukaryotic systems that use different exons 
to produce protein isoforms. Although alternative splicing can 
use nonadjacent exons, a TU consists of a set of adjacent genes.

Several operon databases, such as RegulonDB (Santos-Zavaleta 
et al., 2019), MicrobesOnline (Dehal et al., 2010), and ProOpDB 
(Taboada et al., 2012) provide various levels of operon information 
describing genes only expressed in single TU or operon. While 
DOOR2 (Mao et al., 2014) and OperomeDB (Chetal and Janga, 
2015) provide the more comprehensive TUs describing genes 
are co-transcribed into different gene sets. Some TU or operon 
databases provide experiment-verified results while most of 
them rely on TU or operon predictions. Studies including 
DOOR2 (Mao et  al., 2014), SeqTU (Chou et  al., 2015), and 
Rockhopper (McClure et  al., 2013) use genomic information 
and gene expression profile to predict operon or TU with 
machine learning and other approaches. Taboada et  al. (2018) 
recently developed a new operon prediction method based on 
artificial neural network (ANN).

Other than in silico prediction works, Yan et  al. recently 
used SMRT-Cappable-seq and PacBio sequencing to re-examine 
the transcription units of E. coli grown under different conditions 
to provide a higher resolution map of dynamic TUs (Yan et al., 
2018). The work of Yan et  al. revealed that TUs are better to 
describe the real bacterial transcription profiles and a gene 
can be  contained in many different co-transcribed gene sets, 
TUs, under the same or different growth conditions. In our 
previous works (Chou et al., 2015; Chen et al., 2017), we assumed 
a gene can only be  co-transcribed into only one adjacent gene 
set, which is one TU. We  also assumed co-transcribed gene 
pairs follow transitive relation, and thus we  connected 
co-transcribed gene pairs into a larger gene sets to form a TU.

In this study, we focused on improving our machine learning 
model for the prediction of the co-transcribed gene pairs 
and providing a user friendly R package, rSeqTU, for a 
comprehensive pipeline including RNA-seq read analysis, TU 
prediction, and TU visualization.

RESULTS

In this rSeqTU R package, we  updated the TU prediction 
model with random forest-based feature selection and support 
vector machine (SVM). Besides, rSeqTU has a completed 
workflow performing RNA-seq read quality control (QC), 
RNA-seq read mapping, generation of TU results in two formats, 
and generation of IGV files for visualization (Figure 1).

rSeqTU requires three input data including RNA-seq data 
in FATSTQ format, reference genome sequence in FASTA 
format, and gene annotations in GFF format. With the input 
data, rSeqTU first performs RNA-seq data QC and RNA-seq 
read mapping to generate QC reports and mapping results in 
BAM format.

Then, rSeqTU uses whole genome per base read coverage 
and gene annotations to generate constructed TUs as the 
training data set. The constructed TUs are generated based 
on the SeqTU algorithm that was first presented by Chou 
et  al. (2015). Briefly, the constructed TUs come from real 
single genes that are split into two adjacent sub genes with 
their intergenic regions to enable us to capture the continuity 
and stability features of RNA-seq signals of the real TUs. 
rSeqTU then applies random forest to select informative features 
using the constructed TUs and applies SVM to build a TU 
prediction model with the selected features.

rSeqTU reports the prediction accuracy and uses the TU 
prediction model to identify all co-transcribed gene pairs in 
the given genome. rSeqTU outputs TU prediction results in 
single gene pairs and concatenated gene pairs. Last, rSeqTU 
converts TU results into IGV-compatible files for TU 
visualizations. In short, rSeqTU produces RNA-seq read QC 
reports, RNA-seq mapping statistics and results, TU prediction 
results, and files for IGV visualization.

To evaluate rSeqTU R package, we used two sets of bacterial 
RNA-seq data of Bacteroides fragilis (B. fragilis) produced 
and published by Donaldson et  al. (2018). These B. fragilis 
RNA-seq data were used to discover that human gut microbiome 
can use immunoglobulin A (IgA) to trigger robust host-
microbial symbiosis for mucosal colonization. The study 
focused on investigating commensal colonization factors 
(CCFs), an operon, which was previously found to be essential 
for B. fragilis for colonization of colonic crypts (Lee et  al., 
2013). The CCF operon has five genes, ccfA-E, which are 
homologous to polysaccharide utilization systems, and the 
ccfA is activated by extracellular glycan sensing and is 
hypothesized to activate genes involved in mucosal colonization 
(Martens et  al., 2009). To understand the function of ccfA 
gene, Donaldson et  al. compared gene expression profiles 
between ccfA overexpressed B. fragilis and wild-type B. fragilis 
during laboratory culture growth. The RNA-seq data helped 
identify 24 out of 25 non-CCF genes that were differentially 
expressed and mapped to the biosynthesis loci for capsular 
polysaccharides A and C (PSA and PSC).

With the two RNA-seq data sets, reference genome sequence, 
and gene annotations, we  performed a full run of rSeqTU 
analysis. The RNA-seq data QC and RNA-seq mapping were 
generated and shown in Figure 2.

In Figure 2, we  generated QC report for both ccfA 
overexpression and wild-type. It shows the read quality score 
plot, which is good in general over 30 (Figure 2A). Also, it 
generated nucleotide frequency plot (Figure 2B), sequence 
duplication plot (Figure 2C), percentage of aligned bases plot 
(Figure 2D), and percentage of unique and mapped reads 
(Figure 2E). We  could observe that the sequence duplication 
is not severe. The nucleotide frequency, aligned bases, and 
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mismatched bases information are in the normal range. The 
percentage of mapped reads and unique reads are lower than 
30% as expected due to the most of the RNAs in the samples 
belong to mouse, the host, but not bacteria.

The two RNA-seq read mapping results were used to  
generate training data for TU prediction models, respectively. 
For ccfA overexpression data set, rSeqTU reported the  
sensitivity, specificity, and accuracy at 0.857, 0.999, and 0.963. 

FIGURE 1 | rSeqTU workflow uses input data to predict bacterial TUs. The rSeqTU workflow has three layers of schemas including input data, core processes, and 
major results. In the input data layer, rSeqTU needs RNA-seq data, reference genome sequence, and gene annotations. In the core process layer, rSeqTU performs 
QC, builds prediction models, and predicts TUs. The results layer includes the QC and mapping results, TU prediction tables, and files for visualization in IGV.

A

B

D E

C

FIGURE 2 | rSeqTU generates RNA-seq read QC reports and RNA-seq mapping statistics. SRR6899499 is ccfA overexpression data, and SRR6900706 is  
wild-type data. The panels (A–E) present quality scores, nucleotide frequency, sequence duplication, percentage of aligned bases plot, and percentage of unique 
and mapped reads.
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For wild-type data set, rSeqTU reported the sensitivity, specificity, 
and accuracy at 0.885, 0.996, and 0.964. In general, we  could 
find that rSeqTU generated high accuracy models after proper 
feature selections and cross-validation.

The two TU prediction models were used to predict 
co-transcribed gene pairs. There are 1,759 and 1,626 
co-transcribed gene pairs predicted in ccfA overexpression and 
wild-type RNA-seq data sets. If we concatenated co-transcribed 
gene pairs, rSeqTU identified 2,727 TUs including 2,079 single-
gene TUs, 271 two-gene TUs, and 377 TUs with more than 
two genes in ccfA overexpression RNA-seq data set. In wild-
type RNA-seq data set, rSeqTU identified 2,860 TUs including 
2,249 single-gene TUs, 256 two-gene TUs, and 355 TUs with 
more than two genes. rSeqTU then uses the TU results to 
generate bedgraph files for the visualization in IGV (Figure 3). 
In Figure 3, we showed a region of B. fragilis genome containing 
eight genes. rSeqTU identified four TUs in the ccfA overexpression 
data (SRR6899499) and four TUs in the wild-type data 
(SRR6900706). However, the structure of the TUs is very 
different between two RNA-seq data sets. The two genes with 
locus tags, BF9343_RS17275 and BF9343_RS17280 were identified 
as a co-transcribed gene pair in the ccfA overexpression data 
but not in the wild-type data. The four genes with the locus 
tags, BF9343_RS17295, BF9343_RS17305, BF9343_RS17310,  
and BF9343_RS17315, were predicted as a single TU in the 
wild-type data but two TUs in the ccfA overexpression data.

To ensure the rSeqTU also performs well on RNA-seq data 
sets of different species, we  took two RNA-seq data sets of 
uropathogenic Escherichia coli strain CFT073 to run TU 
predictions. The two data sets were used to investigate how 
Escherichia coli strain CFT073 senses and detoxifies nitric oxide 
(NO), which is a defense mechanism generated by host immune 
cells (Mehta et  al., 2015). For without NO treatment RNA-seq 
data set, rSeqTU reported the sensitivity, specificity, and accuracy 
at 0.879, 0.997, and 0.952. For without NO treatment RNA-seq 

data set, rSeqTU reported the sensitivity, specificity, and accuracy 
at 0.824, 0.996, and 0.945.

MATERIALS AND METHODS

New Functions Integrated or Invented  
by rSeqTU
rSeqTU uses QuasR R package to perform RNA-seq data QC 
and RNA-seq read mapping. The read mapping results are then 
processed by an algorithm named SeqTU first presented by 
Chou et al. (2015). In brief, the SeqTU algorithm splits relatively 
long single genes into three parts including two sub-gene regions 
and an intergenic region, and then SeqTU uses RNA-seq per-base 
read coverage over the three parts to generate TU features to 
describe the continuity and stability of RNA-seq read coverage. 
SeqTU assumes the RNA-seq read coverage within a TU is 
continuous and stable like it is within a gene.

rSeqTU selects essential TU features by random forest and 
builds TU prediction model by SVM using an R packages, 
Caret and e1071. rSeqTU converts TU prediction results into 
IGV-compatible files in bedgraph format for TU visualizations.

Feature Selection by Random Forest
Random forest is a supervised learning algorithm using the 
ensemble learning based on decision trees. Random forest has 
been successfully used on biological data types such as genomics, 
transcriptomics, epigenomics, proteomics, and metabolomics 
(Degenhardt et  al., 2019). rSeqTU uses recursive feature 
elimination to perform random forest and selects the top eight 
features. The top eight features may vary in different RNA-seq 
data sets, and the top few features are constantly fold change 
of adjacent gene expressions and proportion of gap positions 
in the whole given gene pair region.

FIGURE 3 | The visualization of predicted TUs on IGV. The predicted TUs are displayed in green and red bars for TUs on the forward and the reverse strands.  
The visualization also includes read coverage, gene annotations, and mapping results. SRR6899499 is ccfA overexpression data, and SRR6900706 is wild-type data.
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Bacteroides fragilis RNA-seq Data
We used two RNA-seq data from each triplicate experiment 
from NCBI’s SRA database with project accession number 
PRJNA445716. The accession numbers of the two data sets 
are SRR6899499 (ccfA overexpression) and SRR6900706 (wild-
type). The reference genome sequence and gene annotations 
of Bacteroides fragilis NCTC 9343 are GCF_000025985.1_
ASM2598v1_genomic.fna and GCF_000025985.1_ASM2598v1_
genomic.gff.

Escherichia coli RNA-seq Data
We used two RNA-seq data from each triplicate experiment 
from NCBI’s SRA database with project accession number 
PRJNA286883. The accession numbers of the two data sets are 
SRR2061823 (without NO treatment) and SRR2061826 (with NO 
treatment). The reference genome sequence and gene annotations 
of Escherichia coli strain CFT073 are GCF_000007445.1_
ASM744v1_genomic.fna and GCF_000007445.1_ASM744v1_
genomic.gff.

DISCUSSION

rSeqTU is a machine learning-based R package for TU prediction, 
empowered by a random forest algorithm for feature selection 
and multiple graphical visualizations and interactive tables for 
customized downstream analysis. Its superior prediction 
performance has been demonstrated by testing multiple RNA-Seq 
datasets in B. fragilis. The source code and tutorial of rSeqTU 
is available at https://s18692001.github.io/rSeqTU/.

rSeqTU will be  useful to understand transcriptional profiles 
of bacterial genomes in the gene level and the TU level. In 
addition to the single bacterium, rSeqTU may also be  applied 
onto the metatranscriptomic data, the RNA-seq data of 
microbiome. The TUs of multiple bacteria may provide systemic 
view to understand how microbiome regulates functional 
translation and can be  integrated with other metagenomic and 
metabolomic data (Niu et  al., 2018).

A TU is dynamically composed of different adjacent genes 
under various conditions, and different TUs may overlap with 
each other under the same and different conditions. The dynamic 
TUs sharing the same gene(s) are called alternative transcription 
units (ATUs), and the identification of ATUs is recognized as 
a more challenging computational problem due to their 

condition-dependent nature. Meanwhile, the third generation 
sequencing technology will shortly generate substantial genome 
scale ATU datasets in the public domain for various prokaryotic 
organisms. Hence, advanced computational models are urgently 
needed for ATU prediction based on RNA-Seq data.

Intuitively, the output of rSeqTU can lay a solid foundation 
of ATU prediction as (1) a TU identified in our method can 
represents a maximal ATU clusters with apparent promoter 
and terminator and (2) the TU can be used as an independent 
genomic region for further ATU prediction based on other 
genomic and transcriptomic features. If available, the ATUs 
along with related cis-regulatory motifs analysis will generate 
the dynamic regulatory networks in a bacterial genome to a 
higher resolution and an advanced level.
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