115 research outputs found

    Petrogenesis of Early Cretaceous intermediate-felsic dikes in the Jiaodong Peninsula, south-eastern North China Craton: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes

    Get PDF
    Early Cretaceous dike swarms are widely developed in the Jiaodong Peninsula, NE China. In this study, we newly investigated the spatial-temporal distribution, petrography, geochronology and whole-rock geochemistry of the intermediate-felsic dikes from the Jiaobei terrane and the Sulu orogenic belt in the Jiadong Peninsula. The zircon U-Pb dating has constrained the timing of the emplacement of intermediate-felsic dikes to 128–108 Ma. The quartz diorite dikes in Jiaobei show adakitic geochemical features, including high SiO2 (66.3–67.5 wt%) contents and high Sr/Y (76–149) and La/Yb (41–91) ratios. The combination of a series of isotopic data, including initial 87Sr/86Sr ratios (0.7098–0.7104) and negative εNd(t) (−20.1 to −14.7) and zircon εHf(t) values (−19.9 to −9.5), indicates that these quartz diorite dikes were likely derived from partial melting of thickened ancient lower crust with involvement of underplated mafic magmas. Additionally, the diorite dikes in Jiaobei and those in Sulu show similar chemical compositions, as both yield the high-Mg andesite (or andesitic rocks) (HMAs) characteristics with a high Mg# value (60–72), high MgO, Cr, and Ni contents, and low Na2O (average = 3.25 wt%) contents. They also exhibit crustal geochemical signatures, such as depletion in Nb, Ta, and Ti, but enrichment in Th and U; high initial 87Sr/86Sr ratios (0.7063–0.7094), and low εNd(t) (−16.7 to −9.6) and εHf(t) values (−29.4 to −9.8). The entire geochemical evidences imply that they derived from the partial melting of mantle wedge peridotite metasomatized by hydrous fluids from the subduction of the oceanic slab with marine sediments. In combination with the Early Cretaceous intrusions and mafic dikes at Jiaodong, the intermediate-felsic dikes represent a magmatic response to lithospheric thinning resulted from the prolonged thermo-mechanical-chemical erosion processes caused by slab rollback of the Paleo-Pacific plate

    Global prevalence of Cryptosporidium spp. in pigs: a systematic review and meta-analysis

    Get PDF
    Cryptosporidium spp. are significant opportunistic pathogens causing diarrhoea in humans and animals. Pigs are one of the most important potential hosts for Cryptosporidium. We evaluated the prevalence of Cryptosporidium in pigs globally using published information and a random-effects model. In total, 131 datasets from 36 countries were included in the final quantitative analysis. The global prevalence of Cryptosporidium in pigs was 16.3% (8560/64 809; 95% confidence interval [CI] 15.0–17.6%). The highest prevalence of Cryptosporidium in pigs was 40.8% (478/1271) in Africa. Post-weaned pigs had a significantly higher prevalence (25.8%; 2739/11 824) than pre-weaned, fattening and adult pigs. The prevalence of Cryptosporidium was higher in pigs with no diarrhoea (12.2%; 371/3501) than in pigs that had diarrhoea (8.0%; 348/4874). Seven Cryptosporidium species (Cryptosporidium scrofarum, Cryptosporidium suis, Cryptosporidium parvum, Cryptosporidium muris, Cryptosporidium tyzzeri, Cryptosporidium andersoni and Cryptosporidium struthioni) were detected in pigs globally. The proportion of C. scrofarum was 34.3% (1491/4351); the proportion of C. suis was 31.8% (1385/4351) and the proportion of C. parvum was 2.3% (98/4351). The influence of different geographic factors (latitude, longitude, mean yearly temperature, mean yearly relative humidity and mean yearly precipitation) on the infection rate of Cryptosporidium in pigs was also analysed. The results indicate that C. suis is the dominant species in pre-weaned pigs, while C. scrofarum is the dominant species in fattening and adult pigs. The findings highlight the role of pigs as possible potential hosts of zoonotic cryptosporidiosis and the need for additional studies on the prevalence, transmission and control of Cryptosporidium in pigs

    Retinal degeneration in rpgra mutant zebrafish

    Get PDF
    Introduction: Pathogenic mutations in RPGRORF15, one of two major human RPGR isoforms, were responsible for most X-linked retinitis pigmentosa cases. Previous studies have shown that RPGR plays a critical role in ciliary protein transport. However, the precise mechanisms of disease triggered by RPGRORF15 mutations have yet to be clearly defined. There are two homologous genes in zebrafish, rpgra and rpgrb. Zebrafish rpgra has a single transcript homologous to human RPGRORF15; rpgrb has two major transcripts: rpgrbex1-17 and rpgrbORF15, similar to human RPGRex1-19 and RPGRORF15, respectively. rpgrb knockdown in zebrafish resulted in both abnormal development and increased cell death in the dysplastic retina. However, the impact of knocking down rpgra in zebrafish remains undetermined. Here, we constructed a rpgra mutant zebrafish model to investigate the retina defect and related molecular mechanism.Methods: we utilized transcription activator-like effector nuclease (TALEN) to generate a rpgra mutant zebrafish. Western blot was used to determine protein expression. RT-PCR was used to quantify gene transcription levels. The visual function of embryonic zebrafish was detected by electroretinography. Immunohistochemistry was used to observe the pathological changes in the retina of mutant zebrafish and transmission electron microscope was employed to view subcellular structure of photoreceptor cells.Results: A homozygous rpgra mutant zebrafish with c.1675_1678delins21 mutation was successfully constructed. Despite the normal morphological development of the retina at 5 days post-fertilization, visual dysfunction was observed in the mutant zebrafish. Further histological and immunofluorescence assays indicated that rpgra mutant zebrafish retina photoreceptors progressively began to degenerate at 3-6 months. Additionally, the mislocalization of cone outer segment proteins (Opn1lw and Gnb3) and the accumulation of vacuole-like structures around the connecting cilium below the OSs were observed in mutant zebrafish. Furthermore, Rab8a, a key regulator of opsin-carrier vesicle trafficking, exhibited decreased expression and evident mislocalization in mutant zebrafish.Discussion: This study generated a novel rpgra mutant zebrafish model, which showed retinal degeneration. our data suggested Rpgra is necessary for the ciliary transport of cone-associated proteins, and further investigation is required to determine its function in rods. The rpgra mutant zebrafish constructed in this study may help us gain a better understanding of the molecular mechanism of retinal degeneration caused by RPGRORF15 mutation and find some useful treatment in the future

    CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1

    Get PDF
    <p>Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the <i>CERKL</i> (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. <i>In vitro</i> and <i>in vivo</i>, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.</p

    Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy

    Get PDF
    Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS(−/−) zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death

    Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration

    Get PDF
    Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    Get PDF
    Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study
    • …
    corecore