9,193 research outputs found

    Risk and Predictability of Singapore’s Direct Residential Real Estate Market

    Get PDF
    This study explores the topic of the predictability of direct real estate prices in the short-run and the risks facing investors via a case study. Two models are estimated using heteroscedastic and autocorrelation robust ML method. Possible structural shifts of the models are examined. The one assuming that the model captures all the economic influences produces slightly better in-sample fitting. The other model assumes that there could be some important information which is not publicly available. Such information can nevertheless be extracted using Kalman filter. The latter has smaller forecast error in general. We found that a rational speculative bubble is an important predictor of short-run price movement, especially when the market is volatile and noisy. Rental is the only fundamental variable which has any important role to play in the short-run price generating process. Further more, the influence of rental is significant only when the market is inactive. Based on the study, we argue that the risk facing market participants comes not from the rational speculative bubble given its predictability, but primarily from unpredictable local policy shifts.Risk; information; rational bubble; Kalman filter

    Effects of Compound Danshen tablets on spatial cognition and expression of brain β-amyloid precursor protein in a rat model of alzheimer's disease

    Get PDF
    AbstractObjectiveTo observe the effects of Compound Danshen Tablets (CDST) on spatial cognition and expression of brain b-amyloid precursor protein (β-APP) in a rat model of Alzheimer's disease.MethodsThe rat model of Alzheimer's disease (AD) was established using D-galactose to cause subacute aging combined with Meynert nucleus damage. Rat behavior was monitored using the Morris water maze, and the expression of β-APP in rat brain tissue was detected via immunohistochemistry.ResultsCDST significantly improved spatial cognition and decreased β-APP expression in the cortex and hippocampus (P<0.05, P<0.01).ConclusionsCDST can significantly improve spatial cognition in a rat model of AD. This observation is possibly related to a reduction in β-APP expression in the rat brain

    A STUDY OF USING FULLY CONVOLUTIONAL NETWORK FOR TREETOP DETECTION ON REMOTE SENSING DATA

    Get PDF
    Individual tree detection and counting are critical for the forest inventory management. In almost all of these methods that based on remote sensing data, the treetop detection is the most important and essential part. However, due to the diversities of the tree attributes, such as crown size and branch distribution, it is hard to find a universal treetop detector and most of the current detectors need to be carefully designed based on the heuristic or prior knowledge. Hence, to find an efficient and versatile detector, we apply deep neural network to extract and learn the high-level semantic treetop features. In contrast to using manually labelled training data, we innovatively train the network with the pseudo ones that come from the result of the conventional non-supervised treetop detectors which may be not robust in different scenarios. In this study, we use multi-view high-resolution satellite imagery derived DSM (Digital Surface Model) and multispectral orthophoto as data and apply the top-hat by reconstruction (THR) operation to find treetops as the pseudo labels. The FCN (fully convolutional network) is adopted as a pixel-level classification network to segment the input image into treetops and non-treetops pixels. Our experiments show that the FCN based treetop detector is able to achieve a detection accuracy of 99.7&thinsp;% at the prairie area and 66.3&thinsp;% at the complicated town area which shows better performance than THR in the various scenarios. This study demonstrates that without manual labels, the FCN treetop detector can be trained by the pseudo labels that generated using the non-supervised detector and achieve better and robust results in different scenarios

    Age as a risk factor for acute mountain sickness upon rapid ascent to 3,700 m among young adult Chinese men.

    Get PDF
    BackgroundThe aim of this study was to explore the relationship between age and acute mountain sickness (AMS) when subjects are exposed suddenly to high altitude.MethodsA total of 856 young adult men were recruited. Before and after acute altitude exposure, the Athens Insomnia Scale score (AISS) was used to evaluate the subjective sleep quality of subjects. AMS was assessed using the Lake Louise scoring system. Heart rate (HR) and arterial oxygen saturation (SaO2) were measured.ResultsResults showed that, at 500 m, AISS and insomnia prevalence were higher in older individuals. After acute exposure to altitude, the HR, AISS, and insomnia prevalence increased sharply, and the increase in older individuals was more marked. The opposite trend was observed for SaO2. At 3,700 m, the prevalence of AMS increased with age, as did severe AMS, and AMS symptoms (except gastrointestinal symptoms). Multivariate logistic regression analysis showed that age was a risk factor for AMS (adjusted odds ratio [OR] 1.07, 95% confidence interval [CI] 1.01-1.13, P&lt;0.05), as well as AISS (adjusted OR 1.39, 95% CI 1.28-1.51, P&lt;0.001).ConclusionThe present study is the first to demonstrate that older age is an independent risk factor for AMS upon rapid ascent to high altitude among young adult Chinese men, and pre-existing poor subjective sleep quality may be a contributor to increased AMS prevalence in older subjects

    Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro

    Get PDF
    The mechanism by which TGF-β regulates renal inflammation and fibrosis is largely unclear; however, it is well accepted that its biological effects are mediated through Smad2 and Smad3 phosphorylation. Following activation, these Smads form heteromeric complex with Smad4 and translocate into the nucleus to bind and regulate the expression of target genes. Here we studied the roles of Smad4 to regulate TGF-β signaling in a mouse model of unilateral ureteral obstruction using conditional Smad4 knockout mice and in isolated Smad4 mutant macrophages and fibroblasts. Disruption of Smad4 significantly enhanced renal inflammation as evidenced by a greater CD45+ leukocyte and F4/80+ macrophage infiltration and upregulation of IL-1β, TNF-α, MCP-1, and ICAM-1 in the obstructed kidney and in IL-1β-stimulated macrophages. In contrast, deletion of Smad4 inhibited renal fibrosis and TGF-β1-induced collagen I expression by fibroblasts. Further studies showed that the loss of Smad4 repressed Smad7 transcription, leading to a loss of functional protein. This, in turn, inhibited IκBα expression but enhanced NF-κB activation, thereby promoting renal inflammation. Interestingly, deletion of Smad4 influenced Smad3-mediated promoter activities and the binding of Smad3 to the COL1A2 promoter, but not Smad3 phosphorylation and nuclear translocation, thereby inhibiting the fibrotic response. Thus, Smad4 may be a key regulator for the diverse roles of TGF-β1 in inflammation and fibrogenesis by interacting with Smad7 and Smad3 to influence their transcriptional activities in renal inflammation and fibrosis

    Improvements to enhance robustness of third-order scale-independent WENO-Z schemes

    Full text link
    Although there are many improvements to WENO3-Z that target the achievement of optimal order in the occurrence of the first-order critical point (CP1), they mainly address resolution performance, while the robustness of schemes is of less concern and lacks understanding accordingly. In light of our analysis considering the occurrence of critical points within grid intervals, we theoretically prove that it is impossible for a scale-independent scheme that has the stencil of WENO3-Z to fulfill the above order achievement, and current scale-dependent improvements barely fulfill the job when CP1 occurs at the middle of the grid cell. In order to achieve scale-independent improvements, we devise new smoothness indicators that increase the error order from 2 to 4 when CP1 occurs and perform more stably. Meanwhile, we construct a new global smoothness indicator that increases the error order from 4 to 5 similarly, through which new nonlinear weights with regard to WENO3-Z are derived and new scale-independents improvements, namely WENO-ZES2 and -ZES3, are acquired. Through 1D scalar and Euler tests, as well as 2D computations, in comparison with typical scale-dependent improvement, the following performances of the proposed schemes are demonstrated: The schemes can achieve third-order accuracy at CP1 no matter its location in the stencil, indicate high resolution in resolving flow subtleties, and manifest strong robustness in hypersonic simulations (e.g., the accomplishment of computations on hypersonic half-cylinder flow with Mach numbers reaching 16 and 19, respectively, as well as essentially non-oscillatory solutions of inviscid sharp double cone flow at M=9.59), which contrasts the comparative WENO3-Z improvement
    • …
    corecore