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ABSTRACT: 

 

Individual tree detection and counting are critical for the forest inventory management. In almost all of these methods that based on 

remote sensing data, the treetop detection is the most important and essential part. However, due to the diversities of the tree attributes, 

such as crown size and branch distribution, it is hard to find a universal treetop detector and most of the current detectors need to be 

carefully designed based on the heuristic or prior knowledge. Hence, to find an efficient and versatile detector, we apply deep neural 

network to extract and learn the high-level semantic treetop features. In contrast to using manually labelled training data, we 

innovatively train the network with the pseudo ones that come from the result of the conventional non-supervised treetop detectors 

which may be not robust in different scenarios. In this study, we use multi-view high-resolution satellite imagery derived DSM (Digital 

Surface Model) and multispectral orthophoto as data and apply the top-hat by reconstruction (THR) operation to find treetops as the 

pseudo labels. The FCN (fully convolutional network) is adopted as a pixel-level classification network to segment the input image 

into treetops and non-treetops pixels. Our experiments show that the FCN based treetop detector is able to achieve a detection accuracy 

of 99.7% at the prairie area and 66.3% at the complicated town area which shows better performance than THR in the various scenarios. 

This study demonstrates that without manual labels, the FCN treetop detector can be trained by the pseudo labels that generated using 

the non-supervised detector and achieve better and robust results in different scenarios. 

 

 

1. INTRODUCTION 

Forest is one of the most important land surfaces of the earth and 

plays an important role in the global ecosystem. Detailed tree-

level attributes such as tree counts, tree heights, and canopy size 

are essential for monitoring forest regeneration, quantitative 

analysis of forest structure and dynamics, large-scale ecological 

simulations and evaluation of deforestations (Mohan et al., 2017; 

Weng et al., 2015; Zhao et al., 2014). Many works have been 

proposed to perform tree detection and crown delineation with 

remote sensing data and have shown great potential in accurately 

detect in individual level (Hill et al., 2017; Kathuria et al., 2016; 

Latifi et al., 2015). In most of these methods, the treetop detection 

is an essential and critical step, of which the detection accuracy 

is decisive for the final results. And many of these methods are 

using a window-based filter to find a local maximal point as 

potential treetop which is feasible but heavily affected by the type 

of trees. In practice, it is normally hard to find a suitable window 

size for the treetop detection due to the high variation of crown 

size, even with methods that adaptively adjust filter size (Ke and 

Quackenbush, 2011; Özcan et al., 2017; Santoro et al., 2013; 

Skurikhin et al., 2013; Song et al., 2010; Wulder et al., 2000). 

 

Recently, Convolutional Neural Networks (CNN) with deep 

learning technology have demonstrated promising performance 

in tasks such as image classification (Krizhevsky et al., 2012), 

object detection (Redmon et al., 2016; Ren et al., 2015) and 

segmentation (Tsogkas et al., 2015). Different from the low-level 

hand-crafted features, the convolutional neural networks have 

shown good performance in learning high-level semantic 

information from the training samples. After training on large-

scale datasets like ImageNet (Deng et al., 2009), it has been 

shown that the CNN is able to learn distinctive information for 

different object categories and feature points. Considering the 

treetops have strong geometrical and spectral characteristics, we 

apply the CNN to the treetop detection in order to remove the 

time-consuming design of local maximal filter which may need 

repeating experimentation at different scenarios. To overcome 

the shortness of training sample and make the network 

practicable, we innovatively train the network without manual 

labels but the pseudo ones that come from the results of the non-

supervised local maximum detector and get a better detection 

accuracy. 

 

 

Figure 1. The framework of the FCN based treetop detection. 

Firstly, the fused image is generated from DSM and multi-

band orthophoto. Then the image is feed to the treetop 

detection FCN to get a segmental result and finally, the result 

is converted to treetop points. 

 

In the study, we use multi-view very-high-resolution (VHR) 

satellite imagery derived DSM (Digital Surface Model) and 

multi-band orthophoto as research data. We fuse the DSM and 

orthophoto into a 3-channel fused multi-clue image which 

includes the red band, the NDVI values, and the DSM height. For 

the training samples, instead of manually labeling them, we use 

the top-hat by reconstruction (THR) operation on the DSM to 
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detect the local maximum as treetops and mark them as pseudo 

labels. For the deep learning network, we adopt the FCN (fully 

convolutional network) (Long et al., 2015) to segment the input 

image into two categories: treetops and non-treetops. We train 

the FCN with small and fixed-size patches. However, due to the 

character of the fully convolutional layer, an image with any size 

can be used as the input of this network. The framework of the 

proposed FCN based treetop detection is shown in figure 1.  

 

Through this trail of using FCN for treetop detection for the first 

time, we found an efficient and effective way to detect treetops 

that more robustly and efficiently works at different scenarios. 

Also, the experiment demonstrated the possibility of using 

pseudo labels to train the treetop detection neural network 

without any manually labeled samples which make the FCN 

detector more practical. The rest of the paper is organized as 

follows: The related work is in section 2, which followed by the 

methodology of this study; The experiments are given in section 

4; Finally, we conclude in section 5.  

 

2. RELATED WORK 

2.1 Treetop Detection with Local Maximal Filter 

Extensive works based on remote sensing images have been 

performed to contribute to forest measurement at the individual 

tree level. Typically, the first step of these methods is to detect 

the treetops. An often used assumption is that treetops reflect the 

light shedding on them in a decreasing manner from top to 

bottom (Culvenor, 2002; Özcan et al., 2017). Hence, treetops can 

be detected as bright spots in the satellite or aerial images, and 

based on this, window-based local maximal filters were proposed 

to find the brightest points as treetops (Pouliot and King, 2005; 

Wang et al., 2004; Wulder et al., 2000). However, it is difficult 

to find an appropriate window size for the maximal filter which 

heavily depends on the spatial resolution of the image and the 

size of the trees that usually have huge variations (Ke and 

Quackenbush, 2011; Özcan et al., 2017). Even there are several 

local maximal filters which can adaptively change their sizes 

based on the estimated dimension of the trees (Santoro et al., 

2013; Skurikhin et al., 2013; Song et al., 2010), the filter-based 

methods still do not have enough improvement in the areas that 

contain a variety of trees. Besides local maximal filtering, tree 

templates were also used to detect treetops through template 

matching (Quackenbush et al., 2000; Tarp-Johansen, 2002). 

Representative and complete templates normally lead to good 

matching results with high accuracy, while such methods may 

need a large amount of training data and their poor transferability 

to other different datasets can be an issue (Mallinis et al., 2008).  

 

On the other hand, 3D presentation of the surface of objects that 

provided by 3D points is becoming popular. Right now, much 

attention is given to the use of 3D point cloud data on individual 

tree detection (Ferraz et al., 2016; Gini et al., 2014; Jakubowski 

et al., 2013; Kathuria et al., 2016; Saarinen et al., 2017; Strîmbu 

and Strîmbu, 2015; Turner et al., 2012). Most of the methods 

used the canopy height model (CHM) generated from the 3D 

point clouds. The CHM can naturally highlight the treetops and 

directly derive the tree heights. Similar to the 2D image-based 

method, the CHM-based methods also use procedures such as 

image smoothing, local maxima localization, and template 

matching to detect individual trees and their boundaries (Chen et 

al., 2006; Koch et al., 2006; Popescu et al., 2002). like the 

window based method, the size of local maximal filter needs to 

be carefully considered (Mohan et al., 2017). 

2.2 Image Segmentation with Fully Convolutional 

Network 

Recently, deep convolutional neural networks (CNN) have 

dominated the computer vision community and outperformed 

many competing methods in various object recognition 

challenges, such as Pascal VOC Semantic Labeling Challenges 

(Everingham et al., 2010) and the ImageNet classification 

competition (Deng et al., 2009). Many CNNs have been applied 

to pixel-level classification of overhead imagery (Sherrah, 2016; 

Sun et al., 2017), in which the FCN being one of the most basic 

networks. By converting the fully connected layer into the fully 

convolutional layer, it can efficiently perform classification for 

input image with any size at pixel-level for semantic 

segmentation. Given its superior performance, in this paper, we 

adopt FCN to perform a practical task of treetop detection, to 

validate its feasibility for single class object detection. 

 

3. METHODOLOGY 

3.1 Study Area and The Data 

The study area is located in Don Torcuato, a small city on the 

west side of Buenos Aires, Argentina (figure 2). The size of this 

area is 6.740 km by 6.914 km (22469 pixels × 23048 pixels) and 

the scene contains both forested prairies and urban areas. The 

satellite images in this work are from the multi-view benchmark 

dataset provided by John’s Hopkins University Applied Physics 

Lab (JHUAPL) (Bosch et al., 2016; Bosch et al., 2017), 

containing multiple worldview2/3 images over this area across 

two years with a total of approximately 50 images. They were 

taken under various conditions containing on-track and off-track 

stereos with the ground resolution around 0.3 meters, a complete 

set of meta information can be found on their hosting website. To 

derive an accurate DSM, we selected five pairs of the on-track 

stereo image from the year of 2015 in December, with the 

maximal off-nadir angle between 7-19 degrees and the average 

intersection angle between 15-21 degrees. We applied a fully 

automated pipeline proposed by (Qin, 2014, 2017; Qin et al., 

2016) that consists of 1) pansharpening, 2) automatic feature 

matching, 3) pair-wise bundle adjustment, 4) dense matching and 

5) a bilateral-filter based depth-fusion, to generate a high-quality 

DSM and subsequently true orthophoto. The core method is a 

hierarchical semi-global matching (Qin, 2016). In (Qin, 2017), 

he reported an absolute accuracy on this particular dataset 

varying between 2.5-4 meters (inclusion of blunders of all types 

of objects). The readers may find more details about the method 

on this data in (Qin, 2017). Figure 2 shows the orthophoto and 

the DSM for the experimental sites.  

 

 

Figure 2. The orthophoto (RGB band) and the DSM generated 

from satellite imagery with 0.3 m spatial resolution. 
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3.2 The Top-Hat Local Maximal Treetop Detector 

Instead of manually labeling the treetops for the training samples, 

we use the top-hat by reconstruction operation to detect local 

maximal points and further refine them by height check and non-

maxima suppression to generate treetop masks. These treetop 

masks are used to train the network as well as a comparison. 

 

For trees, we naturally assume that the local maximal points in 

the DSM are the treetops. However, since the filter-based method 

requires a careful tuning of the window size, we adopt the grey-

level morphological top-hat by reconstruction operator (THR) to 

find the local maximal points, as it is an effective method to 

detection blob-like shapes and is less sensitive to window sizes 

(Qin and Fang, 2014; Vincent, 1993). Morphological top-hat 

(MTH) is defined as the peaks of an image grid computed by 

morphological operations. In the detection, we first use a disk-

shaped structuring element (SE) to do the grey-level morphology 

erosion on the DSM to generate a marker image 𝜀(DSM, e). Then 

the morphological reconstruction mask B𝜀(DSM,e)  is generated 

from maker image with an iterative operation. Finally, by 

subtracting morphological reconstruction mask from the DSM, 

the peaks on DSM can be extracted. Unlike the filter-based 

methods that only offer one maxima in each filter region and the 

number of total local maxima is heavily dependent on the filter 

size, in most cases, the THR produces local maxima as a blob-

like region and the size of SE specifies the maximally-detectable 

region, thus still keeping all possible local maximal points even 

with overestimation. To locate single local maxima, we use 

opening operation in morphology to reduce (one local maximal 

point in one region) or separate (several sub-local-maximal 

points in one region) large regions and the find maximal points 

in these small regions are the treetops.  

 

In the detection, we use Normalized Difference Vegetation Index 

(NDVI) to remove the points that in the non-vegetation area and 

check the height of the points by subtracting the height of nearby 

terrain area on the DSM. Finally, we use a non-maxima 

suppression to refine the treetops that are too close to each other. 

Figure 3 shows an example of the local maximal point detection 

and the final treetops. The left images (left-top) are the false-

color satellite image of the test area and the NDVI image (left-

bottom) helps to remove the local maximal points in the non-

vegetated area. The final treetops are shown as blue dots in the 

right image where red dots are the local maxima that filtered out 

by the height check and the green stars without blue dots are the 

ones that filtered out by the non-maxima suppression. The size of 

non-maxima suppression window (red rectangles in the image) is 

decided by the height of the local maxima. 

 

 

Figure 3: The illustration of the treetop detection. The 

details are in the text above. 

3.3 The Sample Generation 

In the study area, we randomly select 10 patches with 1000 × 

1000 pixels (300m × 300m) as training (8 patches) and test (2 

patches) areas. In each training patch, 3000 sub-patches are 

generated as training samples. The size of the training sample is 

designed as 48 × 48 pixels corresponding to 14.4 × 14.4m2 which 

is normally large enough to cover the crown of a tree. The treetop 

mask (0 for the non-treetops area, 1 for treetop area) is generated 

by finding treetops through top-hat by reconstruction introduced 

in above section. Instead of using single pixel as treetop, we 

marked the area that around the treetop pixel as treetop area. The 

treetop area size in the experiment is set as 3×3 pixels.  

 

In this study, we convert the 8 bands input orthophoto into a 3-

channel fused multi-cue image. The tree channels are red, NDVI 

and DSM values that normalized into 0-1. Figure 4 gives an 

illustration of the training sample generation processing.  

 

 

Figure 4. The generation of training samples for the FCN. In 

the left image, the rectangles represent patches used for 

training (yellow) and test (red) samples. The right-top image is 

the 3-channel fused image and the rectangles show four 

examples of the training samples and their labels (right-

bottom). 

 

3.4 The Architecture of The FCN and The Training 

 

Figure 5. The architecture of the adopted FCN which is shorter 

than the original one. 

 

In this study, we adopt the basic FCN architecture as our network. 

We cropped the FCN that instead of using 5 blocks of 

convolution and max-pooling layers, we only use 3 due to the 

input size is 48 × 48. After 3 max-pooling layers, the feature 

map’s size will reduce to 6 × 6 and the two fully convolutional 

layers will produce a coarse prediction for the 2 classes at the 

downsampled resolution. The last layer is an up-sampling layer 

used to resize the output image as big as the input one. The 

readers can find more details about the architecture of the original 

FCN in (Long et al., 2015). 

 

The output of the FCN is a 2-channel classification probability 

distribution map. The values in the first and second channel 

represent the possibility of being treetops and non-treetops 

separately. From these two channels, we can generate a 
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segmentation map that includes the two categories. Figure 6 

shows an example of the segmentation output of the FCN. Since 

the segments are regions, we need to further convert them into 

single point treetops. We use the highest point in each region to 

represent the treetops in it. 

 

Figure 6. The treetop detection with FCN output. The top-left 

image is the input fused image with arbitrary size. The left-

bottom image is the segmentation result (white for the 

treetops) overlapping the input image. Right images are the 

two output channels that represent the possibility of been non-

treetops (right-top) and treetops (right-bottom). And the 

brighter the pixel, the higher possibility it belongs to the 

current category. 

 

To train the network, we generate total 24000 image patches and 

labels as described in section 3.3. We set the training epoch as 

200 and the size of training batch is set as 256 and the learning 

rate is set to 0.0001 with the Adam optimizer. Since it is a classic 

classification problem, we use the cross-entropy loss as the target 

function. However, the treetop only takes a small part of the 

image, we weight the loss as [1, 10] for the non-treetops area and 

treetops separately.  

 

4. EXPERIMENT RESULTS 

4.1 Reference Data 

Besides the pseudo labels that generated by the THR operation, 

we still need true labels as reference data to assess the 

performance of the treetop detection. In this study, due to our 

limitation to collect the field samples, we generate the reference 

data by labeling the individual trees with visual inspection as 

some previous research did in their works (Brandtberg et al., 

2003; Ke and Quackenbush, 2011). The reference samples are 

collected by visual inspection through 3D visualization of the 

orthophoto and DSM as shown in figure 7. In this study, we 

labeled the treetops in two test areas which including a town and 

a sparsely forested prairie like the red rectangle marked in figure 

4. In the experiment, the FCN and top-hat based treetop detectors 

are separately used to find the treetops in these two test areas and 

compared to the reference data.  

 

 

Figure 7. The 3D visualization of the data (left) and the 

reference masks (color dots) for the prairie area. 

 

4.2 Accuracy Assessment Measure 

To quantitatively validate the individual treetop detection 

accuracy, we use true positives (TP), false positives (FP) and 

false negatives (FN) to compute the correct detection, wrong 

detections, and the missing detections, respectively denoted as 

detection accuracy (DA) or recall (r), commission error (e𝑐𝑜𝑚) 

and the omission error (e𝑜𝑚): 

 

𝐷𝐴/𝑟 =
𝑛𝑇𝑃

𝑁
,      (1) 

  e𝑐𝑜𝑚 =
𝑛𝐹𝑃

𝑛𝑇𝑃+𝑛𝐹𝑃
,    (2) 

e𝑜𝑚 =
𝑛𝐹𝑁

𝑛𝑇𝑃+𝑛𝐹𝑁
,     (3) 

 

where 𝑛𝑇𝑃, 𝑛𝐹𝑁  and 𝑛𝐹𝑃 are the number of treetops in TP, FN 

and FP category. N is the total number of the reference treetops. 

Other metrics like precision (P) and F-score(F) can be derived as: 

 

𝑝 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑃
,     (4) 

𝐹 =
2𝑟𝑝

𝑟+𝑝
.      (5) 

 

In the experiment, if the detected treetops have an overlap with 

the reference mask, we make it as a correct detection, otherwise 

a false detection. 

 

4.3 Experimental Results and Discussions 

The two experimental sites variably include densely and sparsely 

distributed trees, buildings, cars, shrubs and glasses which make 

the test site cover various surfaces like the urban area. For each 

site, we calculate the results of DA, e𝑐𝑜𝑚 and e𝑜𝑚, as well as the 

precision P and F-scores and the final results can be found in table 

1 and the visualized results can be found in figure 8 and figure 9. 

 

Site 

/N_R. 

Detector N_D. DA/r e𝑐𝑜𝑚 e𝑜𝑚 P F 

Town 

/187 

FCN 178 0.529 0.444 0.471 0.556 0.543 

THR 134 0.444 0.381 0.556 0.619 0.517 

Prairie 

/307 

FCN 272 0.746 0.158 0.254 0.842 0.791 

THR 287 0.782 0.164 0.218 0.836 0.808 

Table 1. The experiment results in the two test areas. N_R. and 

N_D. refer to the number of the reference and detected treetops. 

DA/r is detection accuracy or recall ratio. e𝑐𝑜𝑚 and e𝑜𝑚 are the 

commission error and the omission error while precision and F-

score are represented as P and F. The best numbers are red and 

bolded. 
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Figure 8. The treetop detection result of the town area. The 

yellow dots are the treetops detected by FCN and the red 

circles are the treetops detected by THR operation. 

 

 

Figure 9. The treetop detection result of the prairie area. The 

yellow dots are the treetops detected by FCN and the red 

circles are the treetops detected by THR operation. 

 

As we can observe from the table 1, comparing the two methods, 

the FCN greatly improved the performance in the town area, 

there are total 187 reference trees while FCN detected 52.9% and 

THR detected 44.4%. The surface objects of town area are quite 

complicated: trees at courtyards and on the street vary with crown 

size and height. Shrubs, glasses, and buildings close to trees can 

easily affect the tree area extraction. However, as shown in figure 

8, the FCN based treetop detector detected most treetops even 

they have different height and close to buildings. Even it is 

trained by the THR results, the FCN has much higher DA/r values 

than THR and better or very close values in other assessments. 

The deep learning based network is an end-to-end method which 

does not need to adjust parameters for specified scenarios. In this 

study, the FCN has learned tens of thousands of various samples 

including trees and non-tree objects and it has found the best 

parameters for all the scenarios. On the other hand, the detector 

using top-hat by reconstruction (THR) operation in this area only 

has a mediocre performance. We think the complexity in this area 
impeded the prior-knowledge we have injected into the THR 

detector and further reduced the detection ability. This is also a 

limitation of the manually crafted feature-based method that 

needs prior-knowledge and adjusting the parameter to being 

adapted to different situations. Another reason we believe is that, 

unlike FCN, the top-hat based method never learned the non-

treetops objects that similar to treetops and it would miss-classify 

some confused objects. 

 

In the prairie area, as shown in figure 9, both two methods have 

a good performance. The surface in this area is relatively smooth 

and the trees are easier to be detected. However, even though this 

experiment site is deemed in general as an easier tree detection 

area, the trees are still relatively dense in some places and there 

is no pattern of their distribution. For this area, there are total 307 

reference trees and the FCN algorithm detected 272 treetops 

while the THR get 287 treetops. Comparing to the town area, the 

DA/r can reach as high as 0.782 (THR) and 0.746 (FCN). In this 

area, the two methods have very similar performance that THR 

based method has a little better DA/r. We think this is due to the 

fact that the trees in this area have the typical shapes that we have 

considered in the design of top-hat based treetop detection. 

Meanwhile, without noise and distractions, the top-hat have a 

precise detection of the treetops which also taught the FCN to 

have a fair performance in this area. 

 

From these scores, we can find out that the FCN treetop detector 

shows comparative performance as THR at the prairie area while 

has an outperformance at the town area. The FCN was trained 

from the pseudo labels that generated by THR which may have 

minor errors. But due to the global optimization of all the training 

samples including treetops and non-treetops, the minor errors 

could be corrected. Besides that, the FCN can learn high-level 

semantic features which are also robust in complicated scenarios. 

Hence, comparing to the THR, even it is trained from THR 

results, the FCN based treetop detector can have a fair 

performance and be more robust to complicated areas. 

 

5. CONCLUSIONS 

In the study, we use multi-view high-resolution satellite imagery 

derived DSM (Digital Surface Model) and orthophoto as research 

data to analyze the possibility of using a neural network to detect 

treetops. Since the training of CNN needs a large number of 

labeled samples, instead of manually labeling them, we generate 

the labels by finding treetops with the top-hat by reconstruction 

(THR) operation on DSM. For the deep learning network, we 

adopt the FCN (fully convolutional network) as a pixel-level 

classification network to segment the input image into treetops 

and non-treetops. We train the FCN with small and fixed-size 

patches, but due to the character of the fully convolutional layer, 

arbitrary size image can be the input of this network for treetop 

detection. Through the experiment, we proofed that the FCN 

based detector has a robust performance at various scenes due to 

its ability to learn high-level semantic features from various 

samples. And this study proved that the fully convolutional 

network can be trained with pseudo labels that from the non-

supervised detector and achieve better performance. 

 

There are still some errors in the FCN detection results such as 

that the treetops are too close to each other and miss-classify 

some object as treetops. We believe good training sample can 

lead better results and our next step is working on how to refine 

the training samples by the initial training result. 
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