649 research outputs found

    Superposition of photon- and phonon- assisted tunneling in coupled quantum dots

    Full text link
    We report on electron transport through an artificial molecule formed by two tunnel coupled quantum dots, which are laterally confined in a two-dimensional electron system of an Alx_xGa1x_{1-x}As/GaAs heterostructure. Coherent molecular states in the coupled dots are probed by photon-assisted tunneling (PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between the microwave photons and the molecular states. Below 8 GHz, a pronounced superposition of phonon- and photon-assisted tunneling is observed. Coherent superposition of molecular states persists under excitation of acoustic phonons.Comment: 5 pages, 4 figure

    Determination of the complex microwave photoconductance of a single quantum dot

    Full text link
    A small quantum dot containing approximately 20 electrons is realized in a two-dimensional electron system of an AlGaAs/GaAs heterostructure. Conventional transport and microwave spectroscopy reveal the dot's electronic structure. By applying a coherently coupled two-source technique, we are able to determine the complex microwave induced tunnel current. The amplitude of this photoconductance resolves photon-assisted tunneling (PAT) in the non-linear regime through the ground state and an excited state as well. The out-of-phase component (susceptance) allows to study charge relaxation within the quantum dot on a time scale comparable to the microwave beat period.Comment: 5.5 pages, 6 figures, accepted by Phys. Rev. B (Jan. B15 2001

    Adiabatic steering and determination of dephasing rates in double dot qubits

    Full text link
    We propose a scheme to prepare arbitrary superpositions of quantum states in double quantum--dots irradiated by coherent microwave pulses. Solving the equations of motion for the dot density matrix, we find that dephasing rates for such superpositions can be quantitatively infered from additional electron current pulses that appear due to a controllable breakdown of coherent population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Nonequilibrium stabilization of charge states in double quantum dots

    Full text link
    We analyze the decoherence of charge states in double quantum dots due to cotunneling. The system is treated using the Bloch-Redfield generalized master equation for the Schrieffer-Wolff transformed Hamiltonian. We show that the decoherence, characterized through a relaxation τr\tau_{r} and a dephasing time τϕ\tau_{\phi}, can be controlled through the external voltage and that the optimum point, where these times are maximum, is not necessarily in equilibrium. We outline the mechanism of this nonequilibrium-induced enhancement of lifetime and coherence. We discuss the relevance of our results for recent charge qubit experiments.Comment: 5 pages, 5 figure

    Steering of a Bosonic Mode with a Double Quantum Dot

    Full text link
    We investigate the transport and coherence properties of a double quantum dot coupled to a single damped boson mode. Our numerically results reveal how the properties of the boson distribution can be steered by altering parameters of the electronic system such as the energy difference between the dots. Quadrature amplitude variances and the Wigner function are employed to illustrate how the state of the boson mode can be controlled by a stationary electron current through the dots.Comment: 10 pages, 6 figures, to appear in Phys. Rev.

    Nonlinear cotunneling through an artificial molecule

    Full text link
    We study electron transport through a system of two lateral quantum dots coupled in series. We consider the case of weak coupling to the leads and a bias point in the Coulomb blockade. After a generalized Schrieffer-Wolf transformation, cotunneling through this system is described using methods from lowest-order perturbation theory. We study the system for arbitrary bias voltages below the Coulomb energy. We observe a rich, non-monotonic behavior of the stationary current depending on the internal degrees of freedom. In particular, it turns out that at fixed transport voltage, the current through the system is largest at weak-to-intermediate inter-dot coupling.Comment: 4 pages, 5 figure

    Transport spectroscopy in a time-modulated open quantum dot

    Full text link
    We have investigated the time-modulated coherent quantum transport phenomena in a ballistic open quantum dot. The conductance GG and the electron dwell time in the dots are calculated by a time-dependent mode-matching method. Under high-frequency modulation, the traversing electrons are found to exhibit three types of resonant scatterings. They are intersideband scatterings: into quasibound states in the dots, into true bound states in the dots, and into quasibound states just beneath the subband threshold in the leads. Dip structures or fano structures in GG are their signatures. Our results show structures due to 2ω\hbar\omega intersideband processes. At the above scattering resonances, we have estimated, according to our dwell time calculation, the number of round-trip scatterings that the traversing electrons undertake between the two dot openings.Comment: 8 pages, 5 figure

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.
    corecore