28,900 research outputs found
Optimizing Hartree-Fock orbitals by the density-matrix renormalization group
We have proposed a density-matrix renormalization group (DMRG) scheme to
optimize the one-electron basis states of molecules. It improves significantly
the accuracy and efficiency of the DMRG in the study of quantum chemistry or
other many-fermion system with nonlocal interactions. For a water molecule, we
find that the ground state energy obtained by the DMRG with only 61 optimized
orbitals already reaches the accuracy of best quantum Monte Carlo calculation
with 92 orbitals.Comment: published version, 4 pages, 4 figure
Inelastic Effects in Low-Energy Electron Reflectivity of Two-dimensional Materials
A simple method is proposed for inclusion of inelastic effects (electron
absorption) in computations of low-energy electron reflectivity (LEER) spectra.
The theoretical spectra are formulated by matching of electron wavefunctions
obtained from first-principles computations in a repeated vacuum-slab-vacuum
geometry. Inelastic effects are included by allowing these states to decay in
time in accordance with an imaginary term in the potential of the slab, and by
mixing of the slab states in accordance with the same type of distribution as
occurs in a free-electron model. LEER spectra are computed for various
two-dimensional materials, including free-standing multilayer graphene,
graphene on copper substrates, and hexagonal boron nitride (h-BN) on cobalt
substrates.Comment: 21 pages, 7 figure
Anderson localization in generalized discrete time quantum walks
We study Anderson localization in a generalized discrete time quantum walk -
a unitary map related to a Floquet driven quantum lattice. It is controlled by
a quantum coin matrix which depends on four angles with the meaning of
potential and kinetic energy, and external and internal synthetic flux. Such
quantum coins can be engineered with microwave pulses in qubit chains. The
ordered case yields a two-band eigenvalue structure on the unit circle which
becomes completely flat in the limit of vanishing kinetic energy. Disorder in
the external magnetic field does not impact localization. Disorder in all the
remaining angles yields Anderson localization. In particular, kinetic energy
disorder leads to logarithmic divergence of the localization length at spectral
symmetry points. Strong disorder in potential and internal magnetic field
energies allows to obtain analytical expressions for spectrally independent
localization length which is highly useful for various applications.Comment: 11 pages, 14 figure
Hadronic Transition chi(c1)(1P) to eta(c) plus two pions at the Beijing Spectrometer BES and the Cornell CLEO-c
Hadronic transitions of the chi(cj)(1P) states have not been studied yet. We
calculate the rate of the hadronic transition chi(c1)(1P) to eta(c) plus two
pions in the framework of QCD multipole expansion. We show that this process
can be studied experimentally at the upgraded Beijing Spectrometer BES III and
the Cornell CLEO-c.Comment: 6 pages RevTex4(two-column). Version published in Phys. Rev. D 75,
054019 (2007
Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor
Systematic ac susceptibility measurements have been performed on a MgB
bulk sample. We demonstrate that the flux creep activation energy is a
nonlinear function of the current density , indicating a
nonlogarithmic relaxation of the current density in this material. The
dependence of the activation energy on the magnetic field is determined to be a
power law , showing a steep decline in the activation
energy with the magnetic field, which accounts for the steep drop in the
critical current density with magnetic field that is observed in MgB. The
irreversibility field is also found to be rather low, therefore, the pinning
properties of this new material will need to be enhanced for practical
applications.Comment: 11 pages, 6 figures, Revtex forma
Effect of disorder with long-range correlation on transport in graphene nanoribbon
Transport in disordered armchair graphene nanoribbons (AGR) with long-range
correlation between quantum wire contact is investigated by transfer matrix
combined with Landauer's formula. Metal-insulator transition is induced by
disorder in neutral AGR. Thereinto, the conductance is one conductance quantum
for metallic phase and exponentially decays otherwise when the length of AGR is
infinity and far longer than its width. Similar to the case of long-range
disorder, the conductance of neutral AGR first increases and then decreases
while the conductance of doped AGR monotonically decreases, as the disorder
strength increases. In the presence of strong disorder, the conductivity
depends monotonically and non-monotonically on the aspect ratio for heavily
doped and slightly doped AGR respectively.Comment: 6 pages, 8 figures; J. Phys: Condensed Matter (May 2012
Radiative and Collisional Jet Energy Loss in a Quark-Gluon Plasma
We calculate radiative and collisional energy loss of hard partons traversing
the quark-gluon plasma created at RHIC and compare the respective size of these
contributions. We employ the AMY formalism for radiative energy loss and
include additionally energy loss by elastic collisions. Our treatment of both
processes is complete at leading order in the coupling, and accounts for the
probabilistic nature of jet energy loss. We find that a solution of the
Fokker-Planck equation for the probability density distributions of partons is
necessary for a complete calculation of the nuclear modification factor
for pion production in heavy ion collisions. It is found that the
magnitude of is sensitive to the inclusion of both collisional and
radiative energy loss, while the average energy is less affected by the
addition of collisional contributions. We present a calculation of for
at RHIC, combining our energy loss formalism with a relativistic
(3+1)-dimensional hydrodynamic description of the thermalized medium.Comment: 4 pages, 4 figures, contributed to Quark Matter 2008, Jaipur, Indi
Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice
We have precisely determined the ground state phase diagram of the quantum
spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the
tensor renormalization group method. We find that the ferromagnetic,
ferroquadrupolar, and a large part of the antiferromagnetic phases are stable
against quantum fluctuations. However, around the phase where the ground state
is antiferroquadrupolar ordered in the classical limit, quantum fluctuations
suppress completely all magnetic orders, leading to a plaquette order phase
which breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the
evidence of our numerical results, the quantum phase transition between the
antiferromagnetic phase and the plaquette phase is found to be either a direct
second order or a very weak first order transition.Comment: 6 pages, 9 figures, published versio
- …