14,037 research outputs found

    Transfer-matrix renormalization group study of the spin ladders with cyclic four-spin interactions

    Full text link
    The temperature dependence of the specific heat and spin susceptibility of the spin ladders with cyclic four-spin interactions in the rung-singlet phase is explored by making use of the transfer-matrix renormalization group method. The values of spin gap are extracted from the specific heat and susceptibility, respectively. It is found that for different relative strength between interchain and intrachain interactions, the spin gap is approximately linear with the cyclic four-spin interaction in the region far away from the critical point. Furthermore, we show that the dispersion for the one-triplet magnon branch can be obtained by numerically fitting on the partition function.Comment: 7 pages, 7 figures, 1 tabl

    Impedance Analysis of Bunch Length Measurements at the ATF Damping Ring

    Get PDF
    We present energy spread and bunch length measurements at the Accelerator Test Facility (ATF) at KEK, as functions of current, for different ring rf voltages, and with the beam both on and off the coupling resonance. We fit the on-coupling bunch shapes to those of an impedance model consisting of a resistor and an inductor connected in series. We find that the fits are reasonably good, but that the resulting impedance is unexpectedly large.Comment: 9 pages, 5 figures, presented at 10th International Symposium on Applied Electromagnetics and Mechanics (ISEM2001

    Querying cohesive subgraphs by keywords

    Full text link
    © 2018 IEEE. Keyword search problem has been widely studied to retrieve related substructures from graphs for a keyword set. However, existing well-studied approaches aim at finding compact trees/subgraphs containing the keywords, and ignore a critical measure, density, to reflect how strongly and stablely the keyword nodes are connected in the substructure. In this paper, we study the problem of finding a cohesive subgraph containing the query keywords based on the k-Truss model, and formulate it as minimal dense truss search problem, i.e., finding minimal subgraph with maximum trussness covering the keywords. We first propose an efficient algorithm to find the dense truss with the maximum trussness containing keywords based on a novel hybrid KT-Index (Keyword-Truss Index). Then, we develop a novel refinement approach to extract the minimal dense truss based on the anti-monotonicity property of k-Truss. Experimental studies on real datasets show the outperformance of our method

    Learning the optimal synchronization rates in distributed SDN control architectures

    Get PDF
    Since the early development of Software-DefinedNetwork (SDN) technology, researchers have been concernedwith the idea of physical distribution of the control plane to ad-dress scalability and reliability challenges of centralized designs.However, having multiple controllers managing the networkwhile maintaining a “logically-centralized” network view bringsadditional challenges. One such challenge is how to coordinatethe management decisions made by the controllers which isusually achieved by disseminating synchronization messages ina peer-to-peer manner. While there exist many architecturesand protocols to ensure synchronized network views and drivecoordination among controllers, there is no systematic method-ology for deciding the optimal frequency (or rate) of messagedissemination. In this paper, we fill this gap by introducingthe SDN synchronization problem: how often to synchronize thenetwork views for each controller pair. We consider two differentobjectives; first, the maximization of the number of controllerpairs that are synchronized, and second, the maximization of theperformance of applications of interest which may be affectedby the synchronization rate. Using techniques from knapsackoptimization and learning theory, we derive algorithms withprovable performance guarantees for each objective. Evaluationresults demonstrate significant benefits over baseline schemes thatsynchronize all controller pairs at equal rate

    Submillimeter continuum observations of Sagittarius B2 at subarcsecond spatial resolution

    Get PDF
    We report the first high spatial resolution submillimeter continuum observations of the Sagittarius B2 cloud complex using the Submillimeter Array (SMA). With the subarcsecond resolution provided by the SMA, the two massive star-forming clumps Sgr B2(N) and Sgr B2(M) are resolved into multiple compact sources. In total, twelve submillimeter cores are identified in the Sgr B2(M) region, while only two components are observed in the Sgr B2(N) clump. The gas mass and column density are estimated from the dust continuum emission. We find that most of the cores have gas masses in excess of 100 M_{\odot} and column densities above 1025^{25} cm2^{-2}. The very fragmented appearance of Sgr B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well fitted by a Plummer density distribution. This would lead one to believe that in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms first in an homogeneous core, and the rest of the cluster forms subsequently in the then fragmenting structure.Comment: 4 pages, 2 figures, accepted by A&A letter

    Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system

    Get PDF
    Author name used in this publication: Y. P. ZhengAuthor name used in this publication: A. MakAuthor name used in this publication: Q.-H. HuangAuthor name used in this publication: M.-H. Lu2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore