17 research outputs found

    Single-pixel imaging based on deep learning

    Full text link
    Single-pixel imaging can collect images at the wavelengths outside the reach of conventional focal plane array detectors. However, the limited image quality and lengthy computational times for iterative reconstruction still impede the practical application of single-pixel imaging. Recently, deep learning has been introduced into single-pixel imaging, which has attracted a lot of attention due to its exceptional reconstruction quality, fast reconstruction speed, and the potential to complete advanced sensing tasks without reconstructing images. Here, this advance is discussed and some opinions are offered. Firstly, based on the fundamental principles of single-pixel imaging and deep learning, the principles and algorithms of single-pixel imaging based on deep learning are described and analyzed. Subsequently, the implementation technologies of single-pixel imaging based on deep learning are reviewed. They are divided into super-resolution single-pixel imaging, single-pixel imaging through scattering media, photon-level single-pixel imaging, optical encryption based on single-pixel imaging, color single-pixel imaging, and image-free sensing according to diverse application fields. Finally, major challenges and corresponding feasible approaches are discussed, as well as more possible applications in the future

    Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation

    Get PDF
    We have developed aggregation-induced emission (AIE) dye loaded polymer nanoparticles with deep-red emission for siRNA delivery to pancreatic cancer cells. Two US Food and Drug Administration (FDA) approved surfactant polymers, Pluronics F127 and PEGylated phospholipid, were used to prepare the dye-loaded nanoparticle formulations and they can be used as nanovectors for gene silencing of mutant K-ras in pancreatic cancer cells. The successful transfection of siRNA by the developed nanovectors was confirmed by the fluorescent imaging and quantified through flow cytometry. Quantitative real time polymerase chain reaction (PCR) indicates that the expression of the mutant K-ras oncogene from the MiaPaCa-2 pancreatic cancer cells has been successfully suppressed. More importantly, our in vivo toxicity study has revealed that both the nanoparticle formulations are highly biocompatible in BALC/c mice. Overall, our results suggest that the AIE dye-loaded polymer nanoparticle formulations developed here are suitable for gene delivery and have high potential applications in translational medicine research

    Molecular Signatures of Humic Acids from Different Sources as Revealed by Ultrahigh Resolution Mass Spectrometry

    No full text
    Humic acid (HA) is extremely important for understanding the geochemical cycle of pollutants in different environments. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has performed molecular-level analysis of two standard HAs from the Suwannee River (SRHA) and leonardite (LEHA) and HA from Jiufeng forest in Beijing (JFHA), which is impossible for other conventional instruments. Regardless of the source of HA, compounds containing more heteroatoms (such as nitrogen and sulfur) have a higher degree of unsaturation and aromaticity. JFHA, SRHA, and LEHA from soil, river, and leonardite, respectively, are arranged in order from the lowest to highest degree of humification, according to molecular unsaturation and aromaticity of HAs. Soil HA is more labile and contains many large molecular weight compounds with low unsaturation. Regardless of unsaturation, molecules of River HA have a homogeneous molecular mass distribution and contain many plant-derived lignin- and tannin-like compounds, which are more stable than lipid and more labile than condensed aromatics. Leonardite HA with a high degree of humification contains a large number of compounds with high aromaticity and more heteroatoms and has low lability. Our results reveal the diversity of humic acid at molecular level because of different degree of humification and the lability. These conclusions are significant for understanding the role of humic acid from different sources in pollutant transformation and the geochemical cycle at the molecular level

    Compare the accuracy and precision of Coulter LH780, Mindray BC-6000 Plus, and Sysmex XN-9000 with the international reference flow cytometric method in platelet counting.

    No full text
    ObjectiveThe aim of this study is to evaluate the performance of different platelet counting methods (optical, impedance, fluorescence and hand counting) applied in different analysers by comparing with the international flow cytometric reference method (IRM).MethodsA total of 333 blood samples from different subgroups (168 cases with thrombocytopenia, 136 cases with normal platelet counts and 29 cases with thrombocytosis) were tested. Regarding IRM as the gold standard, we compared the accuracy and precision of different platelet count methods; i.e. LH780 (impedance), BC-6000 Plus (optical (O) and impedance (I)), Sysmex XN-9000 (optical (O), impedance (I), fluorescence (F)), and hand counting.ResultsSysmex XN-9000-F (r = 0.988) had the best correlation with IRM for thrombocytopenic samples; BC-6000 Plus-I (r = 0.966) was more relevant to IRM than any other method for samples with normal platelet counts. Correlation between Sysmex XN-9000-I (r = 0.960) and IRM was the highest among these methods for samples with thrombocytosis. For bias evaluation, the average bias of Sysmex XN-9000-F was -1.5 × 109/L (95% LA = -9.4 to +6.4) for samples with thrombocytopenia, compared with IRM. BC-6000 Plus-I had a small mean difference with IRM for samples with normal platelet counts or thrombocytosis. Moreover, all evaluated methods had acceptable sensitivity, specificity, and concordance rates as compared with IRM in the diagnosis of thrombocytopenia and thrombocytosis.ConclusionsPlatelet counting by Sysmex XN-9000-F is more accurate than other methods for thrombocytopenic samples. BC-6000 Plus-I has superior association and consistency for normal platelet counts. As for thrombocytosis patients, Sysmex XN-9000-I has the highest correlation with IRM while Sysmex XN-9000-O has the highest diagnosis efficacy

    Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics

    No full text
    Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to the patients having to undergo a painful second operation, along with increased economic burden, but the use of drugs is actively solving these problems. The use of systemic drug delivery systems through oral, intravenous, and intramuscular injection of various drugs with different pharmacological properties has effectively reduced the levels of inflammation, lowered the risk of endophytic bacterial infection, and regulated the progress of bone tumor cells, processing and regulating the balance of bone metabolism around the titanium implants. However, due to the limitations of systemic drug delivery systems—such as pharmacokinetics, and the characteristics of bone tissue in the event of different forms of trauma or disease—sometimes the expected effect cannot be achieved. Meanwhile, titanium implants loaded with drugs for local administration have gradually attracted the attention of many researchers. This article reviews the latest developments in local drug delivery systems in recent years, detailing how various types of drugs cooperate with titanium implants to enhance antibacterial, antitumor, and osseointegration effects. Additionally, we summarize the improved technology of titanium implants for drug loading and the control of drug release, along with molecular mechanisms of bone regeneration and vascularization. Finally, we lay out some future prospects in this field

    Rare‐Earth Lanthanum Tailoring Mott–Schottky Heterojunction by Sulfur Vacancy Modification as a Bifunctional Electrocatalyst for Zinc–Air Battery

    No full text
    Zinc–air battery (ZAB) has considerable potential to be applied in the energy storage field. The main commercial electrocatalysts are Pt/C and RuO2, which are expensive and cannot possess good bifunctional electrocatalytic activities including oxygen reduction reaction and oxygen evolution reaction. Herein, the rare‐earth metal lanthanum is first constructed to be a Mott–Schottky heterojunction, and the S vacancy is introduced into the Mott–Schottky heterojunction. The so‐obtained La/La2O2S1−x shows excellent bifunctional electrocatalytic activity with ΔE of 0.68 V, which is superior to La/La2O2S without S vacancies and the commercial Pt/C + RuO2 system. In addition, the La/La2O2S1−x is assembled into ZABs, showing a high open power density of 212 mW cm−2, and a large specific capacity of 707 mAh g−1, as good cycle stability. The density functional theory calculations reveal the tailoring effect of S vacancy on the Schottky barrier to control the electron transfer concentration and ameliorate over‐strong adsorption, which blocks the reflux of electrons and promotes the unidirectional flow of electrons. In addition, the S vacancy modulates the electron cloud of La‐4f orbit and makes the electrocatalytic pathway closer to the ideal pathway

    Roles of follicle stimulating hormone and sphingosine 1-phosphate co-administered in the process in mouse ovarian vitrification and transplantation

    No full text
    Abstract Some major challenges of ovarian tissue vitrification and transplantation include follicle apoptosis induced by cryopreservation and ischemia-reperfusion injury, as well as ovarian follicle loss during post-transplantation. This research aimed to investigate the protective effects and underlying mechanisms of follicle-stimulating hormone (FSH) and Sphingosine-1-phosphate (S1P) on vitrified and post-transplantation ovaries. Ovaries from 21-day-old mice were cryopreservation by vitrification with 0.3 IU/mL FSH, 2 µM S1P, and 0.3 IU/mL FSH + 2 µM S1P, respectively, for follicle counting and detection of apoptosis-related indicators. The results demonstrated that FSH and S1P co-intervention during the vitrification process could preserve the primordial follicle pool and inhibit follicular atresia by suppressing cell apoptosis. The thawed ovaries were transplanted under the renal capsule of 6–8 week-old ovariectomized mice and removed 24 h or 7 days after transplantation. The results indicated that FSH and S1P co-intervention can inhibit apoptosis and autophagy in ovaries at 24 h after transplantation, and promote follicle survival by up-regulating Cx37 and Cx43 expression, enhanced angiogenesis in transplanted ovaries by promoting VEGF expression, as well as increased the E2 levels to restore ovarian endocrine function at 7 days after transplantation. The hypoxia and ischemia cell model was established by CoCl2 treatment for hypoxia in human granulosa-like tumor cell line (KGN), as well as serum-free culture system was used for ischemia. The results confirmed that ischemia-hypoxia-induced apoptosis in ovarian granulosa cells was reduced by FSH and S1P co-intervention, and granulosa cell autophagy was inhibited by up-regulating the AKT/mTOR signaling pathway. In summary, co-administration of FSH and S1P can maintain ovarian survival during ovarian vitrification and increase follicle survival and angiogenesis after transplantation
    corecore