25 research outputs found

    Trypanosoma brucei Lipophosphoglycan Activates Host Immune Responses via the TLR-mediated p38 MAP Kinase and NF-κB Pathways

    Get PDF
    This study was aimed at investigating the immunoregulatory effects of trypanosomal lipophosphoglycan (LPG) anchored to trypanosome membranes, including the formation of neutrophil extracellular traps (NETs) and neutrophil cytokine release after parasite infection. The interaction of cell surface TLR receptors with LPG, which signals cellular responses during Trypanosma brucei infection, was systematically investigated. The cytokine expression profile in neutrophils after exposure to T. brucei LPG, and the involvement of TLR2, TLR4, p38 MAP kinase, and NF-κB in NET formation were studied with molecular immunological approaches including quantitative PCR, western blotting and immunofluorescence. T. brucei -derived LPG induced phosphorylation of p38 MAP kinase and NF-κB, thereby stimulating neutrophil secretion of IL-1β, IL-8, and TNF-α. The blockade of Toll-like receptor 2/4 and specific inhibitors of MyD88, p38 MAP kinase, and NF-κB decreased cytokine release and the phosphorylation of both kinases. Furthermore, the exposure of neutrophils containing LPG to IL-1β and LPG-induced cell supernatants promoted the release of NETs. Our findings suggest that T. brucei LPG activates neutrophil IL-1β secretion via the TLR-mediated p38 MAP kinase and NF-κB pathways, thereby promoting the formation of LPG-stimulated NETs

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    able S7 Differentially expressed genes between ZmPTF1 overexpression line and WT

    No full text
    The diffeentially expressed genes between ZmPTF1 over expression maize lines and W

    ZmNF-YB16 Overexpression Improves Drought Resistance and Yield by Enhancing Photosynthesis and the Antioxidant Capacity of Maize Plants

    No full text
    ZmNF-YB16 is a basic NF-YB superfamily member and a member of a transcription factor complex composed of NF-YA, NF-YB, and NF-YC in maize. ZmNF-YB16 was transformed into the inbred maize line B104 to produce homozygous overexpression lines. ZmNF-YB16 overexpression improves dehydration and drought stress resistance in maize plants during vegetative and reproductive stages by maintaining higher photosynthesis and increases the maize grain yield under normal and drought stress conditions. Based on the examination of differentially expressed genes between the wild-type (WT) and transgenic lines by quantitative real time PCR (qRT-PCR), ZmNF-YB16 overexpression increased the expression of genes encoding antioxidant enzymes, the antioxidant synthase, and molecular chaperones associated with the endoplasmic reticulum (ER) stress response, and improved protection mechanism for photosynthesis system II. Plants that overexpression ZmNF-YB16 showed a higher rate of photosynthesis and antioxidant enzyme activity, better membrane stability and lower electrolyte leakage under control and drought stress conditions. These results suggested that ZmNF-YB16 played an important role in drought resistance in maize by regulating the expression of a number of genes involved in photosynthesis, the cellular antioxidant capacity and the ER stress response

    Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in <i>Litopenaeus vannamei</i>

    No full text
    Litopenaeus vannamei, with high plant protein acceptance and high global aquaculture production, is a potential species for rapeseed meal application. However, rapeseed meal has been associated with anorexia in fish, and whether the same occurs in L. vannamei remains unknown. This study demonstrated the effects of rapeseed meal on the feeding and anorexigenic endocrine of L. vannamei based on feeding behavior and transcriptomics. Soybean meal was replaced with fermented rapeseed meal (50%), and a significant increase in remaining diet and dietary discard was observed with a significant reduction in dietary visits. Transcriptome analysis revealed that the pathways involved in rapeseed meal-induced anorexia mainly included signal transduction, the digestive system, the sensory system, the endocrine system, phototransduction–fly, the thyroid hormone signaling pathway and pancreatic secretion. Moreover, this study further analyzed and identified seven neuropeptides involved in rapeseed meal-induced anorexia, and it explored the complex expression regulation strategies of these neuropeptides. In summary, this study confirmed through feeding behavior that rapeseed meal causes anorexia in L. vannamei, and it identified seven neuropeptides that were closely related to the anorexia process

    A heparin-binding protein of Plasmodium berghei is associated with merozoite invasion of erythrocytes

    No full text
    Abstract Background Malaria caused by Plasmodium species is a prominent public health concern worldwide, and the infection of a malarial parasite is transmitted to humans through the saliva of female Anopheles mosquitoes. Plasmodium invasion is a rapid and complex process. A critical step in the blood-stage infection of malarial parasites is the adhesion of merozoites to red blood cells (RBCs), which involves interactions between parasite ligands and receptors. The present study aimed to investigate a previously uncharacterized protein, PbMAP1 (encoded by PBANKA_1425900), which facilitates Plasmodium berghei ANKA (PbANKA) merozoite attachment and invasion via the heparan sulfate receptor. Methods PbMAP1 protein expression was investigated at the asexual blood stage, and its specific binding activity to both heparan sulfate and RBCs was analyzed using western blotting, immunofluorescence, and flow cytometry. Furthermore, a PbMAP1-knockout parasitic strain was established using the double-crossover method to investigate its pathogenicity in mice. Results The PbMAP1 protein, primarily localized to the P. berghei membrane at the merozoite stage, is involved in binding to heparan sulfate-like receptor on RBC surface of during merozoite invasion. Furthermore, mice immunized with the PbMAP1 protein or passively immunized with sera from PbMAP1-immunized mice exhibited increased immunity against lethal challenge. The PbMAP1-knockout parasite exhibited reduced pathogenicity. Conclusions PbMAP1 is involved in the binding of P. berghei to heparan sulfate-like receptors on RBC surface during merozoite invasion

    Spatio-Temporal Variation and Its Driving Forces of Soil Organic Carbon along an Urban&ndash;Rural Gradient: A Case Study of Beijing

    No full text
    Rapid urbanization has reshaped land cover and the ecological environment, potentially improving or deteriorating soil organic carbon (SOC). However, the response of SOC to urbanization has not yet been fully exploited. Herein, by using the land-use transfer matrix, the Sen &amp; Mann&ndash;Kendall tests, the Hurst index, and a geographical and temporal weighted regression (GTWR) model, as well as an urban&ndash;rural gradient perspective, we assessed the dynamic response of SOC to Beijing&rsquo;s urbanization from 2001 to2015 and identified the main drivers. The results found that SOC stock decreased by 7651.50 t C during the study period. SOC density varied significantly along an urban&ndash;rural gradient, with high value areas mainly being located in remote mountainous rural areas and low value areas mainly being located in urban areas on the plains. There was an uneven variation in SOC density across the urban&ndash;rural gradient, with suburban areas (25&ndash;40 km away from urban cores) losing the most SOC density while urban areas and rural areas remained relatively unchanged. GTWR model revealed the spatio-temporal non-flat stability of various driving forces. Precipitation, the proportion of forest, the proportion of grassland, the population, distance to the urban center, the slope, and the silt content are the main factors related to SOC stock change. As a result, we suggest policy makers reconceptualize the uneven variation in the SOC between urban and rural areas, emphasize suburban areas as a target for controlling SOC loss, and take into consideration the spatial and temporal heterogeneity of the factors influencing SOC stock when evaluating policies

    Dihydroartemisinin imposes positive and negative regulation on Treg and plasma cells via direct interaction and activation of c-Fos

    No full text
    Dihydroartemisinin (DHA) promotes Treg cell proliferation and suppresses plasma cell expansion through direct interaction and activation of c-Fos, underling the bilateral immunoregulatory mechanism of DHA
    corecore