25 research outputs found

    Dynamics Modeling and Load-Sharing Performance Optimization of Concentric Face Gear Split-Torque Transmission Systems

    No full text
    The concentric face gear split-torque transmission system (CFGSTTS) has the advantages of a large reduction ratio and high power density. The CFGSTTS has considerable potential to be applied in helicopter main reducers. As such, in this study, we analyzed the load distribution characteristics of a dual input–dual output concentric face gear split-torque transmission system. A load-dependent time-varying meshing stiffness surrogate model was designed based on a feedforward neural network. The difference in the meshing stiffness between the pinion driving and face gear driving was analyzed. The coupled lumped parameter dynamic model of the bending–torsion–axis–pendulum was developed through Newton’s second law, and the influences of the time-varying meshing stiffness, backlash, comprehensive transmission error, support stiffness, and damping were considered. Finally, the impact of the support stiffness on the load-sharing coefficient was analyzed. An optimization model was constructed with the objective function of minimizing the sum of the load-sharing coefficients and was solved by the marine predator algorithm. In addition, the validity of the optimization results was verified with a finite element model. The results indicate that (1) smaller support stiffnesses of input gears benefit the corresponding load balance; (2) the support stiffnesses of the face gears have different laws of influence on the load-sharing coefficient at the input gear and idler, and the support stiffnesses of the other gears need to be comprehensively considered; (3) the larger supporting stiffnesses of the idler gears and tail gear are beneficial for decreasing the load-sharing coefficient at the input gear; and (4) the optimized load-sharing coefficients at Input Gears 1 and 2 and the idler gear decrease by 23.7%, 24.2%, and 4.6%, respectively

    Active Disturbance Rejection Vibration Control for an All-clamped Piezoelectric Plate with Delay

    No full text
    All-clamped plate structures are usually subject to strong coupling, model uncertainties and system time-delay. To address these challenges, this work proposes a novel vibration control method based on a linear active disturbance rejection controller (LADRC) with time-delay compensation (TDC-LADRC). The mathematical model of the piezoelectric plate is first established based on system identification with an auxiliary variable method. Then ADRC is designed for the delay-free part by a smith predictor with a novel differentiator. An extended state observer (ESO) is drawn to estimate the internal and external disturbances, such as mode errors, higher harmonics and external environmental excitations. Then, real-time compensation is introduced via feed-forward mechanism to attenuate their adverse effects, so that optimal vibration suppression performance can be achieved by the proposed controller. Finally, based on NI-PCIe6343 acquisition card, an experimental set-up is designed to verify and compare the performance of the proposed TDC-LADRC against the traditional LADRC and the traditional predictor based LADRC (PLADRC). Comparative experimental results show that the proposed TDCLADRC possesses the best disturbance rejection and vibration suppression performance

    The Effect of Water on the Tin Electrodeposition from [Bmim]HSO4 Ionic Liquid

    No full text
    The electrodeposition of tin from SnO in ionic liquid 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) in the presence of water at different cathodic potential was investigated. With the addition of water to [Bmim]HSO4 ionic liquid, the electrochemical window of the electrolyte decreases and the reduction potential of Sn(II) positively shifts. The water content of ionic liquid electrolyte has a distinct effect on morphology of the deposits. As water content increased from 0 to 50% (v/v), the morphology of deposits varies from granular to hexagonal rod-like, then to hollow tubular, and finally to wire-like. The XRD phase analysis showed that both Sn and CuSn alloys were deposited in ionic liquid/water mixtures. However, in dried ionic liquids only Cu3Sn was obtained, surprisingly. The difference in the structure might be attributed to the various interactions of the ions with the Cu substrate. In addition, the deposition potential was found to play a significant role in the morphology of deposits

    Synergistic Effect of Sr-O Divacancy and Exposing Facets in SrTiO3 Micro/Nano Particle: Accelerating Exciton Formation and Splitting, Highly Efficient Co2+ Photooxidation

    No full text
    As a typical perovskite-type crystal, polyhedral strontium titanate (SrTiO3) has shown anisotropic charge transport behavior in recent studies, however, the carrier transportation and transition of which has not been explained very clearly. This work present the existence of Sr and O divacancies in the novel rhombicuboctahedron SrTiO3 micro/nano particles (Sr1-xTiO3-x/TiO2-x) with exposing (100), (110) and (111) facets and the diameter of 300-700 nm synthesized via hydrothermal synthesis, and also summarizes the dissociation mechanism of self-trapped excitons (STEs) caused by the divacancy and facet effect. In addition, most importantly, the metastable STEs with ultra-low binding energy (E-b < 3 meV) under illumination are discovered. Combining the model of S-scheme heterojunction, a conversion mechanism of photoinduced carriers is proposed. The photocatalytic reaction of Co2+ is used as the probe reaction, and the unique Sr1-xTiO3-x/TiO2-x possesses a high photooxidation efficiency of Co2+, by which 70.3% of Co2+ is oxidized to Co3+ (CoOOH) in 5 min. This finding may provide a guideline for an optimal design of the photocatalytic materials for the recovery and extraction of metal ions based on SrTiO3

    Serum LBP Is Associated with Insulin Resistance in Women with PCOS.

    No full text
    INTRODUCTION:Lipopolysaccharide-binding protein (LBP) is closely associated with many metabolic disorders. However, no study has been done to explore the relationship between LBP and polycystic ovary syndrome (PCOS). The objective of this study was to investigate whether the serum LBP level is elevated and associated with insulin resistance (IR) in PCOS. PARTICIPANTS AND DESIGN:In this cross-sectional study, 117 PCOS patients and 121 age-matched controls were recruited. Hyperinsulinemic-euglycemic clamp was performed with an expression of M value for insulin sensitivity. Fasting serum samples were collected to detect LBP, lipids, insulin, sex hormones and high sensitive C reactive protein (hs-CRP). Pearson's correlation and multiple linear regression was used to analyze the associations between M value and LBP level. SETTINGS:The study was performed in a clinical research center. RESULTS:Compared with controls, PCOS subjects had a significantly higher LBP concentration (33.03±14.59 vs. 24.35±10.31 μg/ml, p<0.001), and lower M value (8.21±3.06 vs. 12.31±1.72 mg/min/kg, p<0.001). Both in lean and overweight/obese individuals, serum LBP level was higher in PCOS subjects than that in controls. M value was negatively correlated with body mass index (BMI), fasting serum insulin, triglycerides, low-density lipoprotein cholesterol (LDL-c), free testosterone, high sensitive C reactive protein (hs-CRP) and LBP, whereas positively correlated with high-density lipoprotein cholesterol (HDL-c) and sex hormone binding globulin (SHBG). Serum LBP level was associated with M value after adjusting for BMI, fasting serum insulin, SHBG, as well as hs-CRP. CONCLUSION:Serum LBP level significantly is elevated in PCOS, and is independently associated with IR in PCOS

    Synergistic Effect of Sr-O Divacancy and Exposing Facets in SrTiO3 Micro/Nano Particle: Accelerating Exciton Formation and Splitting, Highly Efficient Co2+ Photooxidation

    No full text
    As a typical perovskite-type crystal, polyhedral strontium titanate (SrTiO3) has shown anisotropic charge transport behavior in recent studies, however, the carrier transportation and transition of which has not been explained very clearly. This work present the existence of Sr and O divacancies in the novel rhombicuboctahedron SrTiO3 micro/nano particles (Sr1-xTiO3-x/TiO2-x) with exposing (100), (110) and (111) facets and the diameter of 300-700 nm synthesized via hydrothermal synthesis, and also summarizes the dissociation mechanism of self-trapped excitons (STEs) caused by the divacancy and facet effect. In addition, most importantly, the metastable STEs with ultra-low binding energy (E-b < 3 meV) under illumination are discovered. Combining the model of S-scheme heterojunction, a conversion mechanism of photoinduced carriers is proposed. The photocatalytic reaction of Co2+ is used as the probe reaction, and the unique Sr1-xTiO3-x/TiO2-x possesses a high photooxidation efficiency of Co2+, by which 70.3% of Co2+ is oxidized to Co3+ (CoOOH) in 5 min. This finding may provide a guideline for an optimal design of the photocatalytic materials for the recovery and extraction of metal ions based on SrTiO3
    corecore