171 research outputs found

    Application Of Real-Time Control Strategy To Improve Nitrogen Removal In Wastewater Treatment

    Full text link
    Biological nitrogen removal is an important task in the wastewater treatment. However, the actual removal of total nitrogen (TN) in the wastewater treatment plant (WWTP) is often unsatisfactory due to several causes, one of which is the insufficient availability of carbon source. One possible approach to improve the nitrogen removal therefore is addition of external carbon source, while the amount of which is directly related to operation cost of a WWTP. It is obviously necessary to determine the accurate amount of addition of external carbon source according to the demand depending on the influent wastewater quality. This study focused on the real-time control of external carbon source addition based on the on-line monitoring of influent wastewater quality. The relationship between the influent wastewater quality (specifically the concentration of COD and ammonia) and the demand of carbon source was investigated through experiments on a pilot-scale A/O reactor (1m3) at the Nanjing WWTP, China. The minimum doses of carbon source addition at different situations of influent wastewater quality were determined to ensure the effluent wastewater quality meets the discharge standard. The obtained relationship is expected to be applied in the full-scale WWTPs.

    Length–weight relationship and condition factor of giant tiger shrimp, Penaeus monodon (Fabricius, 1798) from four breeding families

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Background: Length–weight relationships and condition factors of giant tiger shrimp Penaeus monodon (Fabricius, 1798) from four breeding families (family S: South China seas family, family A: African family, family SA: ♂ South China seas family × ♀ Africa family, family AS: ♂ Africa family × ♀ South China seas family) were evaluated in this study. Findings and conclusion: Length–weight relationships can be expressed as W = 0.0239BL2.789 (R2 = 0.8977) in family S, W = 0.0206BL2.9107 (R2 = 0.9107) in family A, W = 0.0211BL2.831 (R2 = 0.8869) in family SA, and W = 0.0249BL2.781 (R2 = 0.9159) in family AS. The growth of P. monodon from four breeding families follows a negative allometric trend. Fulton’s body condition factor (K) was not significantly different in males, while in females, the highest K (3.07) was observed in family AS, and the lowest K was found in family A (1.88). Results from the present study indicate that the cross group family AS (♂ Africa family × ♀ South China seas family) has obvious heterosis in females. This may suggest that the direction of further breeding of P. monodon, should be conducted by using Africa family as male parent, and South China seas family as female parent. Results from the present study will provide valuable information on selective breeding in P. monodon. Methodology used in the present study can also be applied in other similar species

    GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana

    Get PDF
    The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant development and stress response. In the present study, GmWRKY16 encoding a WRKY transcription factor in soybean was functionally characterized in Arabidopsis. GmWRKY16 is a nuclear protein that contains a highly conserved WRKY domain and a C2H2 zinc-finger structure, and has the characteristics of transcriptional activation ability, presenting a constitutive expression pattern with relative expression levels of over fourfold in the old leaves, flowers, seeds and roots of soybean. The results of quantitative real time polymerase chain reaction (qRT-PCR) showed that GmWRKY16 could be induced by salt, alkali, ABA, drought and PEG-6000. As compared with the control, overexpression of GmWRKY16 in Arabidopsis increased the seed germination rate and root growth of seedlings in transgenic lines under higher concentrations of mannitol, NaCl and ABA. In the meantime, GmWRKY16 transgenic lines showed over 75% survival rate after rehydration and enhanced Arabidopsis tolerance to salt and drought with higher proline and lower MDA accumulation, less water loss of the detached leaves, and accumulated more endogenous ABA than the control under stress conditions. Further studies showed that AtWRKY8, KIN1, and RD29A were induced in GmWRKY16 transgenic plants under NaCl treatment. The expressions of the ABA biosynthesis gene (NCED3), signaling genes (ABI1, ABI2, ABI4, and ABI5), responsive genes (RD29A, COR15A, COR15B, and RD22) and stress-related marker genes (KIN1, LEA14, LEA76, and CER3) were regulated in transgenic lines under drought stress. In summary, these results suggest that GmWRKY16 as a WRKY TF may promote tolerance to drought and salt stresses through an ABA-mediated pathway

    EvoMoE: An Evolutional Mixture-of-Experts Training Framework via Dense-To-Sparse Gate

    Full text link
    Mixture-of-experts (MoE) is becoming popular due to its success in improving the model quality, especially in Transformers. By routing tokens with a sparse gate to a few experts (i.e., a small pieces of the full model), MoE can easily increase the model parameters to a very large scale while keeping the computation cost in a constant level. Most existing works just initialize some random experts, set a fixed gating strategy (e.g., Top-k), and train the model from scratch in an ad-hoc way. We identify that these MoE models are suffering from the immature experts and unstable sparse gate, which are harmful to the convergence performance. In this paper, we propose an efficient end-to-end MoE training framework called EvoMoE. EvoMoE starts from training one single expert and gradually evolves into a large and sparse MoE structure. EvoMoE mainly contains two phases: the expert-diversify phase to train the base expert for a while and spawn multiple diverse experts from it, and the gate-sparsify phase to learn an adaptive sparse gate and activate a dynamic number of experts. EvoMoE naturally decouples the joint learning of both the experts and the sparse gate and focuses on learning the basic knowledge with a single expert at the early training stage. Then it diversifies the experts and continues to train the MoE with a novel Dense-to-Sparse gate (DTS-Gate). Specifically, instead of using a permanent sparse gate, DTS-Gate begins as a dense gate that routes tokens to all experts, then gradually and adaptively becomes sparser while routes to fewer experts. Evaluations are conducted on three popular models and tasks, including RoBERTa for masked language modeling task, GPT for language modeling task and Transformer for machine translation task. The results show that EvoMoE outperforms existing baselines, including Switch, BASE Layer, Hash Layer and StableMoE

    Skeletal Ontogeny and Anomalies in Larval and Juvenile Crimson Snapper, Lutjanus erythropterus Bloch, 1790

    Get PDF
    This article is made available under the CC-BY-NC license. Copyright © 2018 Zoological Society of Pakistan.Skeletal anomalies in farmed fish affect animal welfare and economic return in aquaculture but very limited information exists on skeletal ontogeny and anomalies among species of the family Lutjanidae. This study describes the skeletal ontogeny and anomalies of crimson snapper Lutjanus erythropterus larvae and juveniles from hatching to 36 day-post hatching (DPH). Mandible, ceratobranchial, cleithrum and gill arches were the initial skeletal structures appeared at 3 DPH that supported the vital life functions such as feeding and respiration. Ossification of premaxilla and maxilla and dentary started at 3.21 ± 0.25 mm (9 DPH), and completed at 5.91 ± 0.34 mm (18 DPH). The head skeleton formation completed at 22.35 ± 2.26 mm (31 DPH). The axial skeleton development started with the formation of neural arches at 3.64 ± 0.07 mm (10 DPH) and ossification of axial skeleton completed at 11.01 ± 0.88 mm (24 DPH). The fins developed sequentially and the ossification of fins completed at 30.57 ± 2.44 mm (36 DPH). A total of 39.5% fish exhibited anomalies in the present study and the anomalies were: lordosis, vertebral fusion, neural spines bifurcation, connection of adjacent pterygiophores, haemal spine anomaly, neural spines anomaly, anomaly in pterygiophores and supernumerary neural spines. Results from this study add new knowledge to functional morphology of crimson snapper that would be useful to larval aquaculture of marine teleosts. Read more at http://researcherslinks.com/current-issues/Skeletal-Ontogeny-and-Anomalies-in-Larval/20/1/1391/html#LWtRCAugubXQpPjy.9

    Effects of replacing dietary fishmeal with zymolytic black soldier fly larvae on the growth performance of the mud crab (<em>scylla paramamosain</em>) larvae

    Get PDF
    Black soldier fly have been shown to be one of the optimal alternatives to fishmeal, but there are few reports on the effects of zymolytic black soldier fly larvae (ZBSFL) on the growth and digestion of crustaceans. An 8-week feeding trial was conducted to evaluate the effects of different replacement levels of ZBFLS on growth performance, body composition, and digestive enzyme activity of the mud crab larvae. Four diets were formulated by replacing fishmeal with 0%, 5%, 10% and 15% ZBSFL in the basal diet. Crab larvae were randomly divided into four groups of three replicates each and fed twice daily. The results showed that the SR of crab larvae was higher than that of the no-substitution group when the substitution rate reached 5% (P < 0.05). There was no significant change in SR when the substitution rate was further increased. Weight growth rate and Specific growth rate were similar, both highest at 10% substitution ratio. The crude protein content of whole crab larvae gradually increased as the proportion of FM substituted by ZBSFL increased. The lipid content of whole crab larvae in the 5% substitution ratio group was significantly higher than that in all other groups (P < 0.05). Meanwhile. The activities of amylase, protease and lipase gradually increased. In this experiment, when the percentage of ZBSFL substitution for FM reached 10%, its growth performance was optimal, with higher SR, less negative effects and more balanced indicators in all aspects. When the substitution rate was further increased, it might increase the digestive burden of the crab and negatively affect its growth

    Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies

    Get PDF
    Sugarcane-soybean intercropping has been widely used to control disease and improve nutrition in the field. However, the response of the soil microbial community diversity and structure to intercropping is not well understood. Since microbial diversity corresponds to soil quality and plant health, a pot experiment was conducted with sugarcane intercropped with soybean. Rhizosphere soil was collected 40 days after sowing, and MiSeq sequencing was utilized to analyze the soil microbial community diversity and composition. Soil columns were used to assess the influence of intercropping on soil microbial activity (soil respiration and carbon-use efficiency: nitrogen-use efficiency ratio). PICRUSt and FUNGuild analysis were conducted to predict microbial functional profiling. Our results showed that intercropping decreased pH by approximately 8.9% and enhanced the soil organic carbon, dissolved organic carbon, and available nitrogen (N) by 5.5%, 13.4%, and 10.0%, respectively. These changes in physicochemical properties corresponded to increased microbial diversity and shifts in soil microbial communities. Microbial community correlated significantly (p < 0.05) with soil respiration rates and nutrient use efficiency. Furthermore, intercropping influenced microbial functions, such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi. These overrepresented functions might accelerate nutrient conversion and control phytopathogens in soil

    Identification and characterization of novel amphioxus microRNAs by Solexa sequencing

    Get PDF
    An analysis of amphioxus miRNAs suggests an expansion of miRNAs played a key role in the evolution of chordates to vertebrate

    Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3_{3}-based piezoceramics

    Get PDF
    Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO3_{3} solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V1^{-1} along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides

    Pharmacokinetics, Bioavailability, and Tissue Distribution Study of Angoroside C and Its Metabolite Ferulic Acid in Rat Using UPLC-MS/MS

    Get PDF
    Angoroside C is a phenylpropanoid glycoside compound isolated from the dried root of Scrophularia ningpoensis Hemsl., which possesses the effects of preventing ventricular remodeling, reducing pulmonary oedema, and reducing blood pressure, as well as having the properties of anti-platelet aggregation, hepatoprotection and anti-nephritis, etc. However, few investigations have been conducted on the absorption, distribution, metabolism, and excretion (ADME) study of angoroside C. Thus, a fast ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method was established for the determination of angoroside C and its metabolite ferulic acid in rat plasma and tissue homogenate. The two analytes were extracted from the biosamples using a simple protein precipitation with acetonitrile. The developed method was validated and successfully applied to the pharmacokinetics, bioavailability and tissue distribution study after the intragastric administration of angoroside C (100 mg/kg) or the intravenous administration of angoroside C (5 mg/kg), respectively. The results showed that angoroside C can be absorbed extremely quickly (Tmax = 15 min), can be eliminated very rapidly (t1/2 = 1.26 h), and its oral bioavailability is only about 2.1%. Furthermore, angoroside C was extensively distributed in all main organs (liver, heart, spleen, lung, kidney, and brain), and the highest concentration was detected in the lung 15 min after oral administration. This paper also indicated that angoroside C could be converted to the active metabolite ferulic acid in vivo. The maximum concentrations of ferulic acid in the kidney occurred at 6 h after oral administration. In summary, this study explored some of the pharmacokinetic characteristics of angoroside C in vivo, and the data produced could provide a basis for the further investigation of angoroside C
    corecore