8 research outputs found

    Discussion on event-based cameras for dynamic obstacles recognition and detection for UAVs in outdoor environments

    Get PDF
    To safely navigate and avoid obstacles in a complex dynamic environment, autonomous drones need a reaction time less than 10 milliseconds. Thus, event-based cameras have increasingly become more widespread in the academic research field for dynamic obstacles detection and avoidance for UAV, as their achievements outperform their frame-based counterparts in term of low-latency. Several publications showed significant results using these sensors. However, most of the experiments relied on indoor data. After a short introduction explaining the differences and features of an event-based camera compared to traditional RGB camera, this work explores the limits of the state-of-art event-based algorithms for obstacles recognition and detection by expanding their results from indoor experiments to real-world outdoor experiments. Indeed, this paper shows the inaccuracy of event-based algorithms for recognition due to insufficient amount of events generated and the inefficiency of event-based obstacles detection algorithms due to the high ration of noise

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Numerical and Experimental Study on Combustion Characteristics of Micro-Gas Turbine Biogas Combustor

    No full text
    The use of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and our dependence on fossil fuels. The focus of this research was to investigate the fuel/air mixing and combustion performance in an DLE (dry low emission) type can combustor designed for a micro-gas turbine. The fuel and air mixing uniformity was studied considering the air flow characteristic and fuel injection performance through the numerical simulation. The influence of the fuel/air mixing characteristics on the combustion characteristics was studied by numerical simulation and experimental tests. The combustion characteristics studied included the temperature field in the combustor, the pattern factor at the combustor outlet, combustion efficiency, and pollutant emission characteristics. The results show the position of the fuel nozzle has little effect on the mixing uniformity due to the limited mixing space for the micro-gas turbine combustor, while there are optimal fuel nozzle diameters to generate the suitable fuel jet momentum for the mixing process. The fuel/air mixing characteristics had an obvious influence on the combustion performance for the studied DLE combustor. The increase in the fuel air mixing uniformity can decrease the NOx emissions and generate a better temperature distribution at the combustor outlet. The increased mixing uniformity may decrease the combustion efficiency and increase the CO emissions of the micro-gas turbine combustor

    Bilayer-favored intercalation induced efficient and selective liquid phase production of bilayer graphene

    No full text
    Bilayer graphene (BLG) is gaining increasing attention as one of the most promising candidate materials for post-silicon nanoelectronics. It is still a tremendous challenge to selectively and efficiently produce BLG at low cost and under mild conditions. Herein, a novel strategy of bilayer-favored intercalation (BFI) induced liquid phase exfoliation of BLG under mild conditions was developed. This simple approach can effectively exfoliate graphite to give BLG with a high yield of 52.3%, and selectivity as high as 86.5%. The obtained twisted BLG not only maintains the structural integrity and low surface oxidation of graphene, but also demonstrates great electron mobility. With careful experimental design and use of DFT calculations, such efficient production of BLG is proved to originate from the formation of a stage-two graphite intercalation compound via the bilayer-favored intercalation of chromyl chloride (CrO2Cl2) into graphite flakes driven by the electrostatic interactions between CrO2Cl2 and graphene sheets. The BFI-induced liquid phase exfoliation strategy shows great potential for the industrial scale production of high-quality BLG

    Bilayer-favored intercalation induced efficient and selective liquid phase production of bilayer graphene

    No full text
    Bilayer graphene (BLG) is gaining increasing attention as one of the most promising candidate materials for post-silicon nanoelectronics. It is still a tremendous challenge to selectively and efficiently produce BLG at low cost and under mild conditions. Herein, a novel strategy of bilayer-favored intercalation (BFI) induced liquid phase exfoliation of BLG under mild conditions was developed. This simple approach can effectively exfoliate graphite to give BLG with a high yield of 52.3%, and selectivity as high as 86.5%. The obtained twisted BLG not only maintains the structural integrity and low surface oxidation of graphene, but also demonstrates great electron mobility. With careful experimental design and use of DFT calculations, such efficient production of BLG is proved to originate from the formation of a stage-two graphite intercalation compound via the bilayer-favored intercalation of chromyl chloride (CrO2Cl2) into graphite flakes driven by the electrostatic interactions between CrO2Cl2 and graphene sheets. The BFI-induced liquid phase exfoliation strategy shows great potential for the industrial scale production of high-quality BLG

    A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5

    No full text
    Abstract The interplay between topology and interaction always plays an important role in condensed matter physics and induces many exotic quantum phases, while rare transition metal layered material (TMLM) has been proved to possess both. Here we report a TMLM Ta2Pd3Te5 has the two-dimensional second-order topology (also a quadrupole topological insulator) with correlated edge states - Luttinger liquid. It is ascribed to the unconventional nature of the mismatch between charge- and atomic- centers induced by a remarkable double-band inversion. This one-dimensional protected edge state preserves the Luttinger liquid behavior with robustness and universality in scale from micro- to macro- size, leading to a significant anisotropic electrical transport through two-dimensional sides of bulk materials. Moreover, the bulk gap can be modulated by the thickness, resulting in an extensive-range phase diagram for Luttinger liquid. These provide an attractive model to study the interaction and quantum phases in correlated topological systems
    corecore