5,100 research outputs found

    Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions

    Full text link
    We investigate the effects of spin-flip scattering on the Hall transport and spectral properties of gapped Dirac fermions. We find that in the weak scattering regime, the Berry curvature distribution is dramatically compressed in the electronic energy spectrum, becoming singular at band edges. As a result the Hall conductivity has a sudden jump (or drop) of e2/2he^2/2h when the Fermi energy sweeps across the band edges, and otherwise is a constant quantized in units of e2/2he^2/2h. In parallel, spectral properties such as the density of states and spin polarization are also greatly enhanced at band edges. Possible experimental methods to detect these effects are discussed

    Multi-view urban scene reconstruction in non-uniform volume

    Full text link
    This paper presents a new fully automatic approach for multi-view urban scene reconstruction. Our algorithm is based on the Manhattan-World assumption, which can provide compact models while preserving fidelity of synthetic architectures. Starting from a dense point cloud, we extract its main axes by global optimization, and construct a nonuniform volume based on them. A graph model is created from volume facets rather than voxels. Appropriate edge weights are defined to ensure the validity and quality of the surface reconstruction. Compared with the common pointcloud- to-model methods, the proposed methodology exploits image information to unveil the real structures of holes in the point cloud. Experiments demonstrate the encouraging performance of the algorithm. © 2013 SPIE

    Magnetodielectric effect of Bi6Fe2Ti3O18 film under an ultra-low magnetic field

    Full text link
    Good quality and fine grain Bi6Fe2Ti3O18 magnetic ferroelectric films with single-phase layered perovskite structure have been successfully prepared via metal organic decomposition (MOD) method. Results of low-temperature magnetocapacitance measurements reveal that an ultra-low magnetic field of 10 Oe can produce a nontrivial magnetodielectric (MD) response in zero-field-cooling condition, and the relative variation of dielectric constants in magnetic field is positive, i.e., MD=0.05, when T<55K, but negative with a maximum of MD=-0.14 when 55K<T<190K. The magnetodielectric effect appears a sign change at 55K, which is due to transition from antiferromagnetic to weak ferromagnetic; and vanishes abruptly around 190K, which is thought to be associated with order-disorder transition of iron ion at B site of perovskite structures. The ultra-low-field magnetodielectric behaviour of Bi6Fe2Ti3O18 film has been discussed in the light of quasi-two-dimension unique nature of local spin order in ferroelectric film. Our results allow expectation on low-cost applications of detectors and switches for extremely weak magnetic fields in a wide temperature range 55K-190K.Comment: 10 pages 4 figures, planned to submit to J. Phys.: Condensed Matte

    Endothelial protein C receptor in renal tubular epithelial cells and influencing factors

    Get PDF
    The endothelial protein C receptor (EPCR) plays an important role within the protein C pathway in regulating coagulation and inflammation. It was reported that EPCR was expressed in large vessels, placenta, heart, liver and lung endothelial cell. However, there are a few studies concerned about renal epithelial cells. This study aims to investigate EPCR expression in renal tubular epithelial cells and related influencing factors. EPCR expression was assessed by flow cytometry in renal tubular epithelial cells. The effects of some reagents (high glucose, tumor necrosis factor–α and interleukin-1β) were measured by RT-PCR. The results showed that renal tubular epithelial cells had the high expression of EPCR level. High glucose, tumor necrosis factor–α and interleukin-1β might reduce EPCR expression. And troglitazone could significantly improve the inhibition. In conclusion, we found EPCR expression in renal tubular epithelial cells in vitro. Some factors such as high glucose, tumor necrosis factor–α and interleukin-1β can impact on EPCR. However, troglitazone had protective effects of EPCR on injured cells.Key words: Endothelial protein C receptor, renal tubular epithelial cell, troglitazone, tumor necrosis factor-α, interleukin-1β; high glucose

    Dr. Yang Zhong: an explorer on the road forever

    Get PDF
    On the morning of September 25th 2017, grievous news spread from the remote Ordos region of Inner Mongolia to Fudan University campus in Shanghai. Professor Yang Zhong, a famous botanist and the Dean of Fudan University’s graduate school, passed away in a tragic car accident while on a business trip

    State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays

    Get PDF
    Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    From UV to NIR: A Full-Spectrum Metal-Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions

    Get PDF
    Photo‐mediation offers unparalleled spatiotemporal control over controlled radical polymerizations (CRP). Photo‐induced electron/energy transfer reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization is particularly versatile owing to its oxygen tolerance and wide range of compatible photocatalysts. In recent years, broadband‐ and near‐infrared (NIR)‐mediated polymerizations have been of particular interest owing to their potential for solar‐driven chemistry and biomedical applications. In this work, we present the first example of a novel photocatalyst for both full broadband‐ and NIR‐mediated CRP in aqueous conditions. Well‐defined polymers were synthesized in water under blue, green, red, and NIR light irradiation. Exploiting the oxygen tolerant and aqueous nature of our system, we also report PET‐RAFT polymerization at the microliter scale in a mammalian cell culture medium
    corecore