11,672 research outputs found
On the Application of Gluon to Heavy Quarkonium Fragmentation Functions
We analyze the uncertainties induced by different definitions of the momentum
fraction in the application of gluon to heavy quarkonium fragmentation
function. We numerically calculate the initial fragmentation
functions by using the non-covariant definitions of with finite gluon
momentum and find that these fragmentation functions have strong dependence on
the gluon momentum . As , these fragmentation
functions approach to the fragmentation function in the light-cone definition.
Our numerical results show that large uncertainties remains while the
non-covariant definitions of are employed in the application of the
fragmentation functions. We present for the first time the polarized gluon to
fragmentation functions, which are fitted by the scheme exploited in
this work.Comment: 11 pages, 7 figures;added reference for sec.
Two-stage clustering in genotype-by-environment analyses with missing data
Cluster analysis has been commonly used in genotype-by-environment (G x E) analyses, but current methods are inadequate when the data matrix is incomplete. This paper proposes a new method, referred to as two-stage clustering, which relies on a partitioning of squared Euclidean distance into
two independent components, the G x E interaction and the genotype main effect. These components are used in the first and second stages of clustering respectively. Two-stage clustering forms the basis for imputing missing values in the G x E matrix so that a more complete data array is available for other GxE analyses. Imputation for a given genotype uses information from genotypes with similar interaction profiles. This imputation method is shown to improve on an existing nearest cluster method that confounds the G x E interaction and the genotype main effect
Guiding chemical pulses through geometry: Y-junctions
We study computationally and experimentally the propagation of chemical
pulses in complex geometries.The reaction of interest, CO oxidation, takes
place on single crystal Pt(110) surfaces that are microlithographically
patterned; they are also addressable through a focused laser beam, manipulated
through galvanometer mirrors, capable of locally altering the crystal
temperature and thus affecting pulse propagation. We focus on sudden changes in
the domain shape (corners in a Y-junction geometry) that can affect the pulse
dynamics; we also show how brief, localized temperature perturbations can be
used to control reactive pulse propagation.The computational results are
corroborated through experimental studies in which the pulses are visualized
using Reflection Anisotropy Microscopy.Comment: submitted to Phys. Rev.
The (gamma^*-q\bar q)-Reggeon Vertex in Next-to-Leading Order QCD
As a first step towards the computation of the NLO corrections to the photon
impact factor in the scattering
process, we calculate the one loop corrections to the coupling of the reggeized
gluon to the vertex. We list the results for the Feynman
diagrams which contribute: all loop integrations are carried out, and the
results are presented in the helicity basis of photon, quark, and antiquark.Comment: 26 pages LaTeX, 3 figures, typos fixe
- …