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Abstract
Considering a family of rational maps Tnλ concerning renormalization transformation,
we give a perfect description of buried points and phase transition points in the Julia
set J(Tnλ). Furthermore, we prove that J(Tnλ) contains an open interval where all points
are buried points for some parameters n and λ, which is according to the problem
that Curry and Mayer proposed.
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1 Introduction
It is well known that the Julia set of a rational map is often a fractal. We say that a point
in the Julia set is a buried point if it does not lie in the boundary of any Fatou component.
If all points in some connected component of the Julia set are buried points, we say this
component is called a buried component. SinceMcMullen [] gave an example of a rational
functionwith so-called buried points and buried components in its Julia set, much interest
has been devoted to investigation of the geometrical and topological properties of buried
points and buried components [–]. In fact, the existence of buried points and buried
components shows that the Julia set has very complex topological properties. In this paper,
we investigate the properties of buried points of the family of rationalmapsTnλ concerning
renormalization transformation, where

Tnλ(z) =
(
z + λ – 
z + λ – 

)n

()

with two parameters n ∈N (n > ) and λ ∈R. This physical model can be derived from the
limit distribution of zeroes of the partition function in the famous Yang-Lee theory [–].
In fact, some interesting relationships among the phase transitions, the critical exponents,
the critical amplitudes and the shape of the Julia sets were found in []. After this, many
works have been devoted to the Julia sets of the renormalization transformation [–].
In order to introduce our results, for any given natural number n > , we define the

following constants:

βn =  + max
–≤t≤

tn – tn+ + 
t – 

.
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Figure 1 The Julia set J(T5λ) for λ = 1.824. The
white region in the real axis of this figure is indeed a
buried open interval.

In [], Qiao proved that βn ∈ (, ) when n is an even number and βn ∈ (, ) when n is an
odd number. Moreover, he also proved that the equation (t – )n– – (t – )n – t +  = 
has one unique real solution γn ∈ (, ] when n is an even number. Furthermore, in this
paper we prove the following.

Theorem  Suppose that Tnλ is defined as (), we have
() if n is an even number, then J(Tnλ) contains buried points if and only if λ ∈ (βn,γn);
() if n = , then J(Tnλ) contains buried points if and only if λ ∈ [ –

√
,βn];

() if n > , then J(Tnλ) contains buried points if and only if λ ∈ [λα ,βn], where λα ∈ (, )
is an absolute constant.

In [], Curry and Mayer proposed some questions about buried points. One of these
questions is the following:
Is there the set of buried points whose components are not either points, circles, or the

irrational points of the Sierpinski curve?
In this paper, considering the Julia sets J(Tnλ), we prove that the set of buried points may

contain an open interval of the real axis R. In fact, we have the following.

Theorem  Suppose that n >  is an odd number, then there exists λ ∈ (, ) such that
J(Tnλ) contains an open interval in which all points are buried points (see Figure ).

For this physical model, it is well known that there is a specific physical significance
about the intersection points between the Julia set J(Tnλ) and the positive real axis R+

when λ is a positive integer. In fact, these intersection points are the locations of phase
transitions of this model. A natural problem is how to distribute on R

+ the locations of
phase transitions? In the following we will show that the number of this kind of intersec-
tion points may be , , , or ∞. Denote by #(J(Tλ) ∩R

+) the number of the intersection
points of J(Tλ) and R

+. Then we have the following.

Theorem  If λ is a positive integer, then
() #(J(Tnλ)∩R

+) = ∞ for any even number n≥  and λ =  (see Figure );
() #(J(Tnλ)∩R

+) =  for any odd number n≥  and λ =  (see the left figure in Figure );
() #(J(Tnλ)∩R

+) =  for any positive n≥  and λ ∈ [,  + 
n–√–

) (see the immediate
figure in Figure );

() #(J(Tnλ)∩R
+) =  for any positive n≥  and λ ∈ [ + 

n–√–
, +∞) (see the right figure

in Figure ).
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Figure 2 The Julia set of J(T41) and its enlargement of one location of phase transitions with 192
times.

Figure 3 The Julia set of J(T31), J(T42) and J(T35).

2 Some notations and preliminary results
Let f be a rational map with degree d ≥  from a complex sphere C to itself. The notation
f k means the kth iteration of f . A point z is called a critical point if f ′(z) = . A point z is
called a periodic point if f k(z) = z for some k ≥ , the minimal of such k is called the period
of z. For a periodic point z with periodic k, themultiplier of z is defined as (f k)′(z). The
periodic point z is either attracting, indifferent, or repelling according to |(f k)′(z)| < ,
|(f k)′(z)| = , or |(f k)′(z)| > . The Julia set, denoted by J(f ), is the closure of repelling
periodic points. Its complement is called the Fatou set, denoted by F(f ). A component D
of F(f ) is called completely invariant if f (D) = f –(D) = D. Moreover, if D is a completely
invariant component, then J(f ) = ∂D. Let P(f ) be the post-critical set of f , i.e., the clo-
sure of the forward orbits of critical points. It plays a crucial rule in the study of complex
dynamics. For the classical results in complex dynamics, see [, ] and [].
In order to prove our theorems, we need the following lemmas.

Lemma  ([, ]) Let f be a rational map f with deg f ≥  and J(f ) connected and locally
connected, then J(f ) contains buried points if and only if f  has no completely invariant
Fatou component.

http://www.advancesindifferenceequations.com/content/2014/1/239
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Lemma  ([]) If J(Tnλ) is connected, then it is locally connected.

Lemma ([]) If n≥  is an odd integer, then Tnλ has only four real fixed points q,q, ,q
(q < q ≤ , q > ) for λ ∈ [, ).

Lemma ([]) Suppose that q is the fixed point stated in Lemma . If n =  and λ ∈ (, ),
then q is an attracting fixed point. If n >  is an odd integer, then there exist two numbers
λα and λβ (λα < λβ ) in (, ) such that
() q is an attracting fixed point for λ ∈ (,λα)∪ (λβ , );
() q is a parabolic fixed point and T ′

nλ(q) = – for λ = λα or λ = λβ ;
() q is a repelling fixed point for λ ∈ (λα ,λβ ).

Lemma  ([] and [])
() If n≥  is an even integer, then T

nλ contains a completely invariant Fatou component
if and only if λ ∈ (–∞,βn]∪ (γn, +∞). Furthermore, J(Tnλ) is connected for
λ ∈ (βn,γn).

() If n >  is an odd integer, then T
nλ contains a completely invariant Fatou component

for λ ∈ (–∞, ]∪ (βn, +∞). Furthermore, T
nλ contains at most three Fatou periodic

(not completely invariant) cycles for λ ∈ [,βn].

3 Proof of Theorem 1
For λ 
= , by (), we have

T ′
nλ(z) =

n(z – )(z + λ – )(z + λ – )n–

(z + λ – )n+
. ()

So Tnλ has only four critical values , ∞,  and Tnλ(–λ + ) = (–λ + )n.
By Lemma , Lemma  and Lemma , it is easy to see that J(Tnλ) contains buried points

if and only if λ ∈ (βn,γn) for even integer n. Similarly, if n >  is an odd number, J(Tnλ)
contains no buried point for λ ∈ (–∞, ] ∪ (βn, +∞), J(Tnλ) contains buried points for
λ ∈ [,βn]. Hence we need only to investigate the case that n >  is an odd integer and
λ ∈ (, ).
Obviously,  and ∞ are two super-attracting fixed points of Tnλ for λ ∈ (,βn]. In the

following we denote by Aλ() and Aλ(∞) two Fatou components of Tnλ that contain 
and∞, respectively. It is easy to see thatTnλ(x) is monotone increasing from q to –(λ–)n

on (q,  – λ) and monotone decreasing from –(λ – )n to –∞ on ( – λ, – λ
 + ), then

q < Tnλ(–λ) = –(λ–)n. It follows that there exists a unique point q∗
 ∈ (–λ, – λ

 +) such
that Tnλ(x) > q for x ∈ (q,q∗

 ) and Tnλ(x) < q for x ∈ (q∗
 , –

λ
 + ). By a similar discussion,

there exists a unique point q∗
 ∈ (– λ

 + , ) such that Tnλ(x) > q for x ∈ (– λ
 + ,q∗

) and
Tnλ(x) < q for x ∈ (q∗

 , –
λ
 + ). Hence we get

 – λ < q < ( – λ) < q∗
 <  –



λ < q∗

 <  < q.

Furthermore,

[–∞,q)∪ (q,∞] ⊂ Aλ(∞),
(
q∗
,q

) ⊂ Aλ(),
(
q∗
 ,q

∗

) ⊂D

(
–

λ


+ 

)
()

http://www.advancesindifferenceequations.com/content/2014/1/239
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and

Tnλ

([
q,q∗


])

=
[
q, ( – λ)n

] ⊂ [
q,q∗


]
, ()

where D(– λ
 + ) is the preimage of Aλ(∞) containing – λ

 + . The fixed points q and q
are repelled. Below we prove

q∗
 > ,= , <  ⇔ λ ∈

(
, –


 + n–√

)
, = –


 + n–√

,∈
(
–


 + n–√

, 
)
, ()

respectively.
In fact, set x = λ–

–λ
, then

T
nλ() = Tnλ()

(xn– + 
x+

xn + 
x+

)n

. ()

It can be verified that

xn– + 
x+

xn + 
x+

> , = , or < 

is equivalent to x > n–√, = n–√, or < n–√, respectively. We get () since Tnλ() < .
(I) If n =  and λ ∈ (, – 

n–√+
). It is easy to verify that (q,q∗

 ) ⊂ Aλ(q) since Tλ(x) > x
for x ∈ (q,q). Hence  ∈ Aλ(q). Next we define

�(λ) =
{
z :

∣∣∣∣z + λ


– 

∣∣∣∣ = λ



}
∩ {z : Rez ≤ }.

It follows that

Tλ
(
�(λ)

)
=

[
–(λ – )n, 

] ⊂ (
q,q∗


) ⊂ Aλ(q).

Note that  –λ ∈ �(λ)∩ (q,q∗
 ), then �(λ)⊂ Aλ(q). Since T–

λ () = ±√
λ – i ∈ �(λ), then

Aλ(q) is completely invariant. This implies that J(Tλ) = ∂Aλ(q) and thus J(Tλ) contains
no buried point.
If n =  and λ ∈ [ – 

n–√+
, ). By () and (), it is easy to see that Aλ(q) contains only

one critical point z =  – λ and deg(Tnλ|Aλ(q)) = . Hence Aλ(q) cannot be completely
invariant since deg(Tnλ) = . Note that Aλ() and Aλ(∞) are also not completely invariant,
then J(Tλ) must contain buried points by Lemma .
(II) If n≥ . Let λα and λβ be two numbers stated in Lemma . Below we prove

λα <  –


n–√ + 
()

and

λβ >  –


n–√ + 
. ()

http://www.advancesindifferenceequations.com/content/2014/1/239
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By the proof of Proposition  in [], we know that q is attracting, parabolic, or repelling
according to

(n + )tn – ntn– – ntn+ + (n – )tn +  > ,= , or < ,

respectively, where t = n√x ∈ (–, ) and Tnλ(x) = x. Set

Pn(t) = (n + )tn – ntn– – ntn+ + (n – )tn + .

Take tn = – 
(n–) , it is easy to see that –t – tn– > 

 for n ≥ . By a calculation, we have

Pn(t) =


n – 

(
n + 
(n – )

– n
(
–t – tn–

))
< .

Note that Pn() = , then there exists α ∈ (t, ) such that Pn(α) = . We can easily deduce
from Tnλ(x) = x that

λ = φ(t) =
tn – tn+ + t – 

t – 
.

By the proof of Proposition  in [], we know that φ(t) is monotone decreasing from
φ(–) =  to φ() =  on (–, ). So we conclude that λα < λt since q is a parabolic fixed
point of Tnλα by Lemma .
Put t∗ = –t, we have

λt =
(tn – )(tn +  – t)

t – 

=
(n – )
(n – )

(
 –

(n – )
(n – )(t∗ + )

)

=


–

(
(n – )

(n – )(t∗ + )
–

(


n – 
+



))
.

It can be proved that ϕ(n) = ( – n–
(n–) )

n (n ≥ ) is monotone decreasing and it tends to

e when n → ∞. It is obvious that tn∗ = 

(n–) <

e for n ≥ . Hence tn∗ < ( – n–

(n–) )
n, i.e.,

t∗ < n–n+
(n–) . By a calculation, we have

(n – )

(n – )(t∗ + )
–

(


n – 
+



)
> .

So λt <

 and thus () is obvious.

Below we prove ().
Take tn = –

 , it is easy to see that t ∈ (–,–.) for n ≥ . Furthermore, we have
Pn(t) < . Note that Pn(–) = , there exists β ∈ (–, t) such that Pn(β) = . Because
λ = φ(t) = tn–tn++t–

t– is monotone decreasing from φ(–) =  to φ() =  on (–, ), it
follows that λβ > λt . Hence

λt =
(tn – )(tn +  – t)

t – 
=



·
(


– t

)
· 
 – t

>


.

We get ().
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If λ ∈ (,λα). By () and (), we know q∗
 > . By the same discussion as used in the case

n = , we can deduce that Aλ(q) is completely invariant for λ ∈ (,λα). This implies that
J(Tnλ) = ∂Aλ(q) and thus J(Tnλ) contains no buried point.
If λ ∈ [λα ,λβ ], it is easy to see that F(Tnλ) contains at most another k-periodic cycle

except for Aλ() and Aλ(∞). By () and (), we can deduce that k ≥  since q is a repelling
fixed point by Lemma  (in fact, the periodic Fatou components lie on both sides of q).
Then T

nλ cannot contain a completely invariant Fatou component. This shows that J(Tnλ)
contains buried points.
If λ ∈ (λβ , ). By (), q∗

 < . By (),Tnλ() ∈ Aλ(∞). It shows thatAλ(q) is not completely
invariant since it contains only one critical point z = –λ and deg(Tk

nλ|Aλ(q)) = , and thus
J(Tnλ) contains buried points. It completes the proof of Theorem .

4 Proof of Theorem 2
Note that the post-critical set P(Tnλ) ⊂ R = R ∪ {∞}. By [], the Julia set J(Tnλ) is con-
nected for λ ∈ (, ). By () and (), we can prove that

∂Aλ(∞)∩R = {q,q} and ∂Aλ()∩R =
{
q∗
,q

}
. ()

In fact, let � be the circle centered at  – 
λ with radius 

λ. Then � passes through
critical points ,  – λ and ±i

√
λ – , and Tnλ(�) = [( – λ)n, ] ⊂ Int(�). We conclude that

Aλ(∞) ∩ Int(�) = ∅ and ∂Aλ(∞) ∩ [ – λ, ] = ∅. For x ∈ (q,  – λ), there exists a positive
integer k such that Tk

nλ(x) ∈ (–λ, (–λ)n]. This implies x /∈ ∂Aλ(∞). Hence ∂Aλ(∞)∩R =
{q,q}.
Let 
 be the component of C \ T–

nλ([–∞, ]) containing . Then  – 
λ ∈ ∂
 and

Aλ()⊂ 
. Therefore Aλ()∩ [q,q∗
 ] = ∅ and ∂Aλ()∩R = {q∗

,q}.
Obviously, T–

nλ (Aλ(∞)) has only two components Aλ(∞) and D(– λ
 + ). By Tnλ : R →

R\((–λ)n, ) andD(– λ
 + )∩R = [q∗

 ,q∗
]⊂ ((–λ)n, ), we know thatW ∩R = ∅ for every

componentW of T–
nλ (D(–

λ
 + )). Similarly, by () and (), we can deduce thatW∗ ∩R = ∅

for every component W∗ of T–
nλ (Aλ()) except for Aλ(). Hence the closures of all pull-

backs of W and W∗ are disjoint with R since Tnλ maps R into R ∪ {∞}. By [], we
know that there exist at least two real numbers λ,λ ∈ (, ) such that Tnλ and Tnλ are
Feigenbaum-likemaps. Obviously,Tnλ andTnλ contain only two Fatou periodic domains
Aλ() and Aλ(∞). By the above analysis and (), we conclude that (q,q∗

 ) lies in the Julia
sets J(Tnλ ) and J(Tnλ ), and each point of this open interval does not belong to the bound-
aries of any Fatou components. This implies that (q,q∗

 ) is a buried interval of J(Tnλ ) and
J(Tnλ ) (in fact, by a calculation, there exists λ ∈ (, ) such that  – λ is strictly even-
tually periodic, then (q,q∗

 ) is also a buried interval of J(Tnλ )). It completes the proof of
Theorem .

5 Proof of Theorem 3
Obviously, Tn(z) = ( z

z– )
n. It has only four critical points , 

 ,  and ∞. Let φ(z) = 
z , then

S(z) = φ– ◦ Tn ◦ φ(z) = zn( – z)n

is a polynomial. Note that φ(∞) = , then the immediate basin Aλ() containing z =  of
Tn is completely invariant. Below we prove () and () of Theorem .

http://www.advancesindifferenceequations.com/content/2014/1/239
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() If n is an even number. We consider the real fixed points of Tn, i.e., the set {x ∈
R|Tn(x) = ( x

x– )
n = x}. It is easy to see that Tnλ(x) has no fixed point on (–∞, ) since

Tnλ(x) ≥  for x ∈ R. By (), Tn(x) is monotone increasing on (,  ) from  to +∞. Note
that Tn(  ) = +∞ and z =  is an attracting fixed point, then there exists at least one fixed
point α ∈ (,  ) such that Tn(x) > x for x ∈ (,α) and (,α)⊂ Aλ().
Next we claim that α is the unique fixed point in (,  ).
Otherwise, if there exists another fixed point γ in (,  ). Without loss of generality, we

assume α < γ , then Tn(x) > x or Tn(x) < x on (α,γ ). Note that Tn(x) is monotone in-
creasing on (,  ), then one of them (α or γ ) is an attracting fixed point or a parabolic
fixed point. Since Tn() = , Tn(  ) = +∞, Tn() =  and Tn(∞) = ∞, then the immedi-
ate basin contains no critical point. But the Sullivan theorem [] says that each immediate
basin contains at least one critical point. It is a contradiction. Hence α is the unique fixed
point on (,  ). Similarly, we can deduce that there also exists a unique fixed point β in
(, +∞). Hence Tn has only four real fixed points , , α, β . α and β are two repelling
fixed points.
Furthermore, by the monotonicity of Tn on (,  ) and (  , ), we know that there ex-

ist only two points β ∈ (α,  ) and β ∈ (  , ) such that Tn(β) = Tn(β) = β . Set f (x) =
Tn(x) – β. Note that f (α) <  and f (β) > . By the monotonicity of f (x), we know
that there exists a unique point β ∈ (α,β) such that Tn(β) = β. Proceeding like this,
we can obtain a strictly monotone decreasing sequence {βm} ⊂ (α,β), which satisfies
Tn(βm+) = βm (m = , , . . .). This implies #(J(Tn) ∩ R

+) = ∞ since β is a repelling fixed
point.
() If n >  is an odd number. By Lemma , we know that Tn has only four fixed points

q < , q = ,  and q > . By a similar discussion as used in () in Theorem , we can
deduce that there exist only two points q∗

 ∈ (,  ) and q∗
 ∈ (  , ) such that Tn(q∗

 ) = q
and Tn(q∗

) = q. Furthermore, we can deduce that

(
q,q∗


) ⊂ An(),

(
q∗
 ,q

∗

) ⊂ A–

λ (∞),

(q,q) ⊂ Aλ(), (q, +∞) ⊂ Aλ(∞).

Hence we get J(Tn)∩R
+ = {q∗

 ,q∗
,q}, i.e., #(J(Tn)∩R

+) = .
() We know that Tnγ has only one fixed point q ∈ (, +∞). Obviously, q is a repelling

fixed point and (q, +∞)⊂ Aλ(∞). In what follows we distinguish two cases to discuss.
(a) If n ≥  and λ = . Tn(z) = ( z+z )n, Tn has only six critical points ±, ±i, , ∞ and

Tn(±) = , Tn(±i) = , Tn() = ∞, Tn(∞) = ∞. Considering the real fixed points of
Tn, Tn(x) has no fixed point on (–∞, ). Note that Tnλ(x) is monotone decreasing on
(, ) from +∞ to , then Tnλ(x) has no fixed point on (, ).
Note that Tnλ(x) is monotone decreasing on (, ) from +∞ to , then there exists a

unique point q ∈ (, ) such that Tn(q) = q. By Lemma , [,q) ⊂D(– λ
 +) and (q,q) ⊂

Aλ(). We get J(Tn)∩R
+ = {q,q}, i.e., #(J(Tn)∩R

+) = .
(b) If n >  and λ ∈ (,  + 

n–√–
). By a similar discussion as () in Theorem , we can

easily deduce that T
nλ() > Tnλ(). Then Tnλ() > .We conclude Tnλ() > q since Tnλ(x) <

x for x ∈ (,q). By (), Tnλ(x) is monotone decreasing on (, ). Then there exists a unique
point q ∈ (, ) such that Tn(q) = q. Note that q ∈ (, ), then J(Tnλ) ∩ R

+ = {q,q}, i.e.,
#(J(Tnλ)∩R

+) = .
() We also distinguish two cases to discuss.

http://www.advancesindifferenceequations.com/content/2014/1/239
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(c) If n =  and λ = . We know that T has a unique repelling point x =  on
(, +∞). It is easy to see that T(x) < x for x ∈ (, ) and T(x) > x for x ∈ (, +∞).
Note that T() =  and T(x) is monotone decreasing for x ∈ (, ), then T(x) ∈ (, )
for x ∈ (, ). Then (, ) ⊂ Aλ() and (,+∞) ⊂ Aλ(∞). We get J(T) ∩ R

+ = {x}, i.e.,
#(J(T)∩R+) = .
(d) If n >  and λ ∈ ( + 

n–√–
, +∞). By a similar discussion as () in Theorem , we

also get T
nλ() < Tnλ(). Hence Tnλ() ∈ (,q) since Tnλ() > . Note that Tnλ(x) is mono-

tone decreasing for x ∈ [, ), then Tnλ(x) ∈ (,q) for x ∈ [, ). This means [,q) ⊂ Aλ().
We obtain J(Tnλ)∩R

+ = {q}, i.e., #(J(Tnλ)∩R
+) = . The proof of Theorem  is completed.
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