28 research outputs found

    In-Place Gestures Classification via Long-term Memory Augmented Network

    Full text link
    In-place gesture-based virtual locomotion techniques enable users to control their viewpoint and intuitively move in the 3D virtual environment. A key research problem is to accurately and quickly recognize in-place gestures, since they can trigger specific movements of virtual viewpoints and enhance user experience. However, to achieve real-time experience, only short-term sensor sequence data (up to about 300ms, 6 to 10 frames) can be taken as input, which actually affects the classification performance due to limited spatio-temporal information. In this paper, we propose a novel long-term memory augmented network for in-place gestures classification. It takes as input both short-term gesture sequence samples and their corresponding long-term sequence samples that provide extra relevant spatio-temporal information in the training phase. We store long-term sequence features with an external memory queue. In addition, we design a memory augmented loss to help cluster features of the same class and push apart features from different classes, thus enabling our memory queue to memorize more relevant long-term sequence features. In the inference phase, we input only short-term sequence samples to recall the stored features accordingly, and fuse them together to predict the gesture class. We create a large-scale in-place gestures dataset from 25 participants with 11 gestures. Our method achieves a promising accuracy of 95.1% with a latency of 192ms, and an accuracy of 97.3% with a latency of 312ms, and is demonstrated to be superior to recent in-place gesture classification techniques. User study also validates our approach. Our source code and dataset will be made available to the community.Comment: This paper is accepted to IEEE ISMAR202

    Comprehensive Analysis of Codon Usage Patterns in Chinese Porcine Circoviruses Based on Their Major Protein-Coding Sequences

    Get PDF
    Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.info:eu-repo/semantics/publishedVersio

    Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) have been widely used in agriculture as a new type of Zn fertilizer, and many studies were conducted to evaluate the effect of ZnO NPs on plant growth. However, there are relatively few studies on the effects of application methods and appropriate dosages of ZnO NPs on rice yield, quality, grain Zn content, and distribution. Therefore, in the 2019 and 2020, field trials were conducted with six ZnO NPs basal application dosages of no ZnO NPs, 3.75 kg hm−2, 7.5 kg hm−2, 15 kg hm−2, 30 kg hm−2, and 60 kg hm−2, and the effects of ZnO NPs application on rice yield, quality, grain Zn content, and distribution were investigated. The results demonstrated that applying ZnO NPs in Zn-deficient soils (available Zn < 1.0 mg kg−1) increased rice grain yield by 3.24%–4.86% and 3.51%–5.12% in 2019 and 2020, respectively. In addition, ZnO NPs improved the quality of rice by increasing the head milling rate, reducing chalky grain percentage, and increasing the taste value and breakdown of rice. In terms of Zn accumulation in rice, ZnO NPs application significantly increased the Zn content in both milled rice and brown rice, compared with no Zn treatment, in 2019 and 2020, Zn content in milled rice significantly increased by 20.46%–41.09% and 18.11%–38.84%, respectively, and in brown rice significantly increased by 25.78%–48.30% and 20.86%–42.00%, respectively. However, the Zn fertilizer utilization gradually decreased with increasing ZnO NPs application dosage. From the perspective of yield, rice quality, Zn fertilizer utilization, and Zn accumulation, basal application of 7.5 kg–30 kg hm−2 ZnO NPs is beneficial for rice yield and quality improvement and rice Zn accumulation. This study effectively demonstrated that ZnO NPs could be a potential high‐performed fertilizer for enhancing rice yield, quality, and zinc content of edible grain fraction synergistically

    BiLSTM-5mC: A Bidirectional Long Short-Term Memory-Based Approach for Predicting 5-Methylcytosine Sites in Genome-Wide DNA Promoters

    No full text
    An important reason of cancer proliferation is the change in DNA methylation patterns, characterized by the localized hypermethylation of the promoters of tumor-suppressor genes together with an overall decrease in the level of 5-methylcytosine (5mC). Therefore, identifying the 5mC sites in the promoters is a critical step towards further understanding the diverse functions of DNA methylation in genetic diseases such as cancers and aging. However, most wet-lab experimental techniques are often time consuming and laborious for detecting 5mC sites. In this study, we proposed a deep learning-based approach, called BiLSTM-5mC, for accurately identifying 5mC sites in genome-wide DNA promoters. First, we randomly divided the negative samples into 11 subsets of equal size, one of which can form the balance subset by combining with the positive samples in the same amount. Then, two types of feature vectors encoded by the one-hot method, and the nucleotide property and frequency (NPF) methods were fed into a bidirectional long short-term memory (BiLSTM) network and a full connection layer to train the 22 submodels. Finally, the outputs of these models were integrated to predict 5mC sites by using the majority vote strategy. Our experimental results demonstrated that BiLSTM-5mC outperformed existing methods based on the same independent dataset

    Comprehensive Analysis of Codon Usage Patterns in Chinese Porcine Circoviruses Based on Their Major Protein-Coding Sequences

    Get PDF
    Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.info:eu-repo/semantics/publishedVersio

    Study on Energy-saving Lighting Design Method for Interior Zone of High-altitude Highway Tunnel

    No full text
    In order to ensure the driving safety of high-altitude highway tunnel and effectively reduce the lighting cost, this paper adopts the method considering the influence of automobile headlights luminance which combines reaction time incremental theory at different altitudes and lighting design simulation calculation. The paper has studied the design pattern of high-altitude highway tunnel, which are dominated by fixed lighting and supplemented by automotive lighting. The results show that: to ensure driving safety, the luminance of the lighting design for interior zone of highway tunnel increases with the increasing altitude. Based on the supplementary lighting of automobile headlights, the lighting design standards for the interior zone of high-altitude highway tunnel(the altitude is 2000m, 3000m, 4000m, 5000m respectively) are 0.73cd/m2, 0.82cd/m2, 0.91cd/m2, 1.0cd/m2

    Impairment of the antibody-dependent phagocytic function of PMNs through regulation of the FcγRs expression after porcine reproductive and respiratory syndrome virus infection.

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) is identified as one of the most important etiological agents in multifactorial respiratory disease of swine and can predispose pigs to secondary infections by other pathogens, usually bacteria. To understand the mechanism for an increased susceptibility to secondary bacterial infections, we investigated the antibody-dependent phagocytosis behaviour and killing ability of PMNs after infection by PRRSV strains BJ-4 or HN07-1. PMN's antibody-dependent phagocytosis and their ability to kill E.coli were both noticeably decreased following PRRSV infection, in particular with the highly pathogenic strain HN07-1. As the change in this function of the PMNs may reflect a variation in the expression of FcγRs, the expression profiles of the activating and the inhibitory FcγRs were examined. We found that RNA expression of the inhibitory receptor FcγRIIB was up-regulated post-infection, and this was greater after infection with the more virulent PRRSV strain HN07-1. The activating receptor FcγRIIIA RNA expression was on the other hand inhibited to the same extent by both PRRSV strains. Neutralizing antibody titers post-infection by PRRSV strains BJ-4 or HN07-1 were also detected. All of the pigs in infection groups showed viraemia by the end of the study (56 DPI). These observations may help to understand the mechanism of increased susceptibility to secondary bacterial infections following PRRSV infection

    Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography

    No full text
    Large-scale production of cell culture-based classical swine fever virus (CSFV) vaccine is hampered by the adverse reactions caused by contaminants from host cell and culture medium. Hence, we have developed an efficient method for purifying CSFV from cell-culture medium. Pure viral particles were obtained with two steps of tangential-flow filtration (TFF) and size-exclusion chromatography (SEC), and were compared with particles from ultracentrifugation by transmission electron microscopy (TEM), infectivity and recovery test, and real time fluorescent quantitative PCR (FQ-PCR). TFF concentrated the virus particles effectively with a retention rate of 98.5%, and 86.2% of viral particles were obtained from the ultrafiltration retentate through a Sepharose 4 F F column on a biological liquid chromatography system. CSFV purified by TFF-SEC or ultracentrifugation were both biologically active from 1.0×10-4.25 TCID50·mL-1 to 3.0×10-6.25 TCID50·mL-1, but the combination of TFF and SEC produced more pure virus particles than by ultracentrifugation alone. In addition, pure CSFV particles with the expected diameter of 40—60 nm were roughly spherical without any visible contamination. Mice immunized with CSFV purified by TFF-SEC produced higher antibody levels compared with immunization with ultracentrifugation-purified CSFV (P<0.05). The purification procedures in this study are reliable technically and feasible for purification of large volumes of viruses
    corecore