55 research outputs found

    SeaNet -- Towards A Knowledge Graph Based Autonomic Management of Software Defined Networks

    Full text link
    Automatic network management driven by Artificial Intelligent technologies has been heatedly discussed over decades. However, current reports mainly focus on theoretic proposals and architecture designs, works on practical implementations on real-life networks are yet to appear. This paper proposes our effort toward the implementation of knowledge graph driven approach for autonomic network management in software defined networks (SDNs), termed as SeaNet. Driven by the ToCo ontology, SeaNet is reprogrammed based on Mininet (a SDN emulator). It consists three core components, a knowledge graph generator, a SPARQL engine, and a network management API. The knowledge graph generator represents the knowledge in the telecommunication network management tasks into formally represented ontology driven model. Expert experience and network management rules can be formalized into knowledge graph and by automatically inferenced by SPARQL engine, Network management API is able to packet technology-specific details and expose technology-independent interfaces to users. The Experiments are carried out to evaluate proposed work by comparing with a commercial SDN controller Ryu implemented by the same language Python. The evaluation results show that SeaNet is considerably faster in most circumstances than Ryu and the SeaNet code is significantly more compact. Benefit from RDF reasoning, SeaNet is able to achieve O(1) time complexity on different scales of the knowledge graph while the traditional database can achieve O(nlogn) at its best. With the developed network management API, SeaNet enables researchers to develop semantic-intelligent applications on their own SDNs

    Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time

    Get PDF
    Salmonella is among the most significant pathogens causing food and feed safety concerns. This study examined the rapid detection of Salmonella in various types of food and feed samples by coupling loop-mediated isothermal amplification (LAMP) with a novel reporter, bioluminescent assay in real-time (BART). Performance of the LAMP-BART assay was compared to a conventional LAMP and the commercially available 3M Molecular Detection Assay (MDA) Salmonella. The LAMP-BART assay was 100 % specific among 178 strains (151 Salmonella and 27 non-Salmonella) tested. The detection limits were 36 cells per reaction in pure culture and 104 to 106 CFU per 25 g in spiked food and feed samples without enrichment, which were comparable to those of the conventional LAMP and 3M MDA Salmonella but 5–10 min faster. Ground turkey showed a strong inhibition on 3M MDA Salmonella, requiring at least 108 CFU per 25 g for detection. The correlation between Salmonella cell numbers and LAMP-BART signals was high (R 2 = 0.941–0.962), suggesting good quantification capability. After 24 h enrichment, all three assays accurately detected 1 to 3 CFU per 25 g of Salmonella among five types of food (cantaloupe, ground beef, ground turkey, shell eggs, and tomato) and three types of feed (cattle feed, chicken feed, and dry dog food) examined. However, 101 CFU per 25 g was required for cattle feed when tested by 3M MDA Salmonella. The Salmonella LAMP-BART assay was rapid, specific, sensitive, quantitative, and robust. Upon further validation, it may become a valuable tool for routine screening of Salmonella in various types of food and feed samples.https://doi.org/10.1186/s12866-016-0730-

    Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor

    Get PDF
    Producción CientíficaThe earliest molecular events in T-cell recognition have not yet been fully described, and the initial T-cell receptor (TCR)-triggering mechanism remains a subject of controversy. Here, using total internal reflection/Forster resonance energy transfer microscopy, we observe a two-stage interaction between TCR, CD8 and major histocompatibility complex (MHC)-peptide. There is an early (within seconds) interaction between CD3ζ and the coreceptor CD8 that is independent of the binding of CD8 to MHC, but that requires CD8 association with Lck. Later (several minutes) CD3ζ–CD8 interactions require CD8–MHC binding. Lck can be found free or bound to the coreceptor. This work indicates that the initial TCR-triggering event is induced by free Lck. The early signalling events that trigger initial T-cell receptor signalling are not clearly defined. Here the authors show that this occurs in two stages, the first between the CD8 coreceptor and CD3 requiring Lck association to CD8, while the second interaction requires binding of major histocompatibility molecules

    Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots

    Get PDF
    DNA mismatch repair (MMR) proteins have been implicated in sensing and correcting DNA damage, and in governing cell cycle progression in the presence of structurally anomalous nucleotide lesions induced by different stresses in mammalian cells. Here, Arabidopsis seedlings were grown hydroponically on 0.5 × MS media containing cadmium (Cd) at 0–4.0 mg L−1 for 5 d. Flow cytometry results indicated that Cd stress induced a G2/M cell cycle arrest both in MLH1-, MSH2-, MSH6-deficient, and in WT roots, associated with marked changes of G2/M regulatory genes, including ATM, ATR, SOG1, BRCA1, WEE1, CYCD4; 1, MAD2, CDKA;1, CYCB1; 2 and CYCB1; 1. However, the Cd-induced G2/M phase arrest was markedly diminished in the MSH2- and MSH6-deficient roots, while a lack of MLH1 had no effect on Cd-induced G2 phase arrest relative to that in the wild type roots under the corresponding Cd stress. Expression of the above G2/M regulatory genes was altered in MLH1, MSH2 and MSH6-deficient roots in response to Cd treatment. Furthermore, Cd elicited endoreplication in MSH2- and MSH6-deficient roots, but not in MLH1-deficient Arabidopsis roots. Results suggest that MSH2 and MSH6 may act as direct sensors of Cd-mediated DNA damage. Taken together, we conclude that MSH2 and MSH6, but not MLH1, components of the MMR system are involved in the G2 phase arrest and endoreplication induced by Cd stress in Arabidopsis roots

    Tight Junction-Related Barrier Contributes to the Electrophysiological Asymmetry across Vocal Fold Epithelium

    Get PDF
    Electrophysiological homeostasis is indispensable to vocal fold hydration. We investigate tight junction (TJ)-associated components, occludin and ZO-1, and permeability with or without the challenge of a permeability-augmenting agent, histamine. Freshly excised ovine larynges are obtained from a local abattoir. TJ markers are explored via reverse transcriptase polymerase chain reaction (RT-PCR). Paracellular permeabilities are measured in an Ussing system. The gene expression of both TJ markers is detected in native ovine vocal fold epithelium. Luminal histamine treatment significantly decreases transepithelial resistance (TER) (N = 72, p<0.01) and increases penetration of protein tracer (N = 35, p<0.001), respectively, in a time-, and dose-dependent fashion. The present study demonstrates that histamine compromises TJ-related paracellular barrier across vocal fold epithelium. The detection of TJ markers indicates the existence of typical TJ components in non-keratinized, stratified vocal fold epithelium. The responsiveness of paracellular permeabilities to histamine would highlight the functional significance of this TJ-equivalent system to the electrophysiological homeostasis, which, in turn, regulates the vocal fold superficial hydration

    Investigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic model

    Full text link
    Interbasin exchange and interannual variability in Lake Erie's three basins are investigated with the help of a three‐dimensional unstructured‐grid‐based Finite Volume Coastal Ocean Model (FVCOM). Experiments were carried out to investigate the influence of grid resolutions and different sources of wind forcing on the lake dynamics. Based on the calibrated model, we investigated the sensitivity of lake dynamics to major external forcing, and seasonal climatological circulation patterns are presented and compared with the observational data and existing model results. It was found that water exchange between the western basin (WB) and the central basin (CB) was mainly driven by hydraulic and density‐driven flows, while density‐driven flows dominate the interaction between the CB and the eastern basin (EB). River‐induced hydraulic flows magnify the eastward water exchange and impede the westward one. Surface wind forcing shifts the pathway of hydraulic flows in the WB, determines the gyre pattern in the CB, contributes to thermal mixing, and magnifies interbasin water exchange during winter. Interannual variability is mainly driven by the differences in atmospheric forcing, and is most prominent in the CB.Key Points:Hydraulic and density flows both dominate interbasin water exchangeInterannual variability is dominated by atmospheric forcingDominant mechanisms of interbasin water exchange vary interseasonallyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111204/1/jgrc21159.pd
    corecore