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Abstract—Modern SDN control stacks consist of multiple
abstraction and virtualization layers to enable flexibility in the
development of new control features. Rich data modeling frame-
works are essential when sharing information across control
layers. Unfortunately, existing NOS data modeling capabilities
are limited to simple type-checking and code templating. We
present an exploration of a more extreme point on SDN data
modeling: ReasoNet. Developers can use semantic web tech-
nologies to enrich their data models with reasoning rules and
integrity/consistency constraints, and automate state inference
across layers. We demonstrate the ability of ReasoNet to auto-
mate state verification and cross-layer debugging, through the
implementation of two popular control applications, a learning
switch and a QoS policy engine.

I. INTRODUCTION

Software defined networking (SDN) technologies have rad-
ically revised traditional network configuration and control
practices. Many vendors offer production-ready SDN devices,
while network operators explore SDN adoption strategies. A
key challenge for SDN adoption is support for carrier-grade
resilience guarantees in production systems.

SDN control planes follow a multi-layer approach – typ-
ically consisting of three layers [1] – to provide resource
virtualization and logical centralization. In the lower layer of
the architecture, network devices expose device configuration
interfaces to external control entities using well-defined pro-
tocols, like OpenFlow. The middle layer of the SDN control
stack, commonly known as the Network Operating System
(NOS), uses these interfaces to synthesize new, high-level,
centralized control abstractions. Finally, control applications
form the upper control layer of the architecture. These appli-
cations use NOS APIs to realize novel control functionalities,
like BGP routing and dynamic resource control.

In an SDN architecture, the NOS operates as a mediation
layer between the network fabric and the control applications;
similarly to an operating system, it virtualizes network re-
source access, abstracts technology heterogeneity and synchro-
nizes resource access between control applications. Applica-
tion developers can rapidly enable new control functionalities,
while being agnostic to the underlying SDN technology and
the state of running control applications. The specification of
flexible data models is a key challenge for the NOS design,
enabling control virtualization and abstraction.

Existing NOS implementations employ data modeling lan-
guages, notably YANG [2], for the specification of application

interfaces and message wire formats. Dedicated compilers,
integrated in the build toolchain of the controller, can generate
language bindings and protocol parsers/serializers for YANG
models, while a central service discovery mechanism allows
late interface binding. Such modeling mechanisms simplify in-
terface implementation and offer basic type checking capabil-
ities. In parallel, verifiable NOS designs, like the Frenetic [3]
project, offer bespoke interfaces with strong guarantees for
various control properties, like policy consistency and resource
allocation. Their extensibility is subject to the underlying
formal model and extensions require model and proof updates,
to avoid potential axiom violations.

NOS designs face significant challenges to improve support
for network virtualization and abstraction, due to limitations in
existing data modeling framework. For example, existing NOS
interfaces rely on static information flows between interacting
entities, which are prone to policy conflicts. Recent research
efforts have demonstrated that controlled state visibility and
flexible control interfaces can mitigate such non-deterministic
behaviors [4], [5]. Furthermore, although the state of a control
application depends on the state of the underlying network
and co-located applications, existing platforms lack generic
mechanisms capturing relevant state associations. The state of
the NOS remains loosely associated with application state —
typically relying on event-driven models to propagate state
changes — and each control layer is responsible to implement
custom state validation logic. Developers must analyze source
code from the NOS and other control applications to ensure
correct integration, while network managers must test exten-
sively new or updated control applications to ensure policy
correctness, prior to their deployment.

In this paper, we argue that better data modeling tools
for SDN controllers can simplify the design of the NOS
and control applications. Such a modeling framework can
enable state association across control layers and improve the
extensibility of the NOS, enable control state validation and
simplify run-time debugging. Towards this goal, we explore
the applicability of semantic web technologies as a data mod-
eling and management framework for SDN control systems.
Specifically, we present an OpenFlow ontology, modeling a
NOS information model, and ReasoNet, a novel NOS ar-
chitecture which allows control applications to exploit the
modeling and data validation capabilities of semantic web
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technologies 1. Specifically, our main contributions are:
• We present the first ontology for OpenFlow technologies,

to the best of our knowledge (§ III).
• We elaborate on the design of a NOS architecture which

provides support for network knowledge inference and
integrity/consistency validation and present a straw-man
implementation, based on the Ryu controller. (§ III).

• We demonstrate the abilities of ReasoNet and the de-
signed ontology by developing two reference network
control applications; a learning switch and a QoS policy
(intent) engine (§ IV).

For the rest of this paper, we provide a short overview of
semantic web technologies and their applicability in the devel-
opment of control applications (§ II). Furthermore, we describe
an ontology model for SDN control and elaborate on the
design of ReasoNet, a novel NOS architecture using semantic
web technologies to model the NOS and the application state
(§ III). In addition, we demonstrate the modeling capabilities
of ReasoNet using a set of popular control applications and
evaluate the impact of semantic web technologies on the
performance of an SDN network (§ IV). Finally, we present
related research efforts (§ V) and conclude this work (§ VI).

II. MOTIVATION

In this section, we identify some key challenges in im-
plementing SDN control interfaces (§ II-A) and discuss the
capabilities of semantic web technologies (§ II-B).

A. Control Application Development

SDN control functions are developed as single-purpose
micro-applications. This development model is enabled by
virtualizing resources and abstracting information in the NOS
layer. The NOS platform aggregates all control channels from
the underlying network infrastructure and synthesizes a high-
level control API. Policy conflicts are resolved by the NOS,
hence, application developers do not have to worry about the
behavior of co-located applications.

The implementation of an SDN NOS or application exten-
sively relies on data modeling, where an SDN control stack
usually contains multiple data and information models. The
NOS develops an information model to converge and abstract
different southbound control protocols, like the ONF Core
Information Model (CIM) [6]. The ONF CIM proposes a com-
mon control state model for NOSes, while specialized drivers
enable control of different network technologies and allow
extensions to the core model. Similarly, control applications
use data models to organize their internal state and expose
configuration parameters and monitoring information. Some
of these models are standardized, like the ASPEN [7] QoS
model, but the majority are implementation-specific.

In summary, SDN control layers transform network infor-
mation to match different data models and data modeling is
vital for the implementation of the control stack. Existing NOS
platforms offer model specification capabilities to applications,

1https://github.com/SemanticSDN

however, their use is limited in automated parsing/marshaling
and interface code generation. Developers are responsible to
implement individual consistency validation functionalities in
the control applications and the NOS.

This design approach enables rapid feature prototyping,
however, it introduces new challenges for data consistency
validation and debugging between control layers and appli-
cations. Firstly, resource virtualization in SDN is prone to
frequent policy conflicts, since network events trigger con-
trol applications to modify common forwarding state. Using
existing modeling mechanisms it is not possible to associate
the impact of a policy update from an application on the
resulting forwarding policy applied by the controller. Sec-
ondly, the generic conflict resolution strategies must address
a fundamental trade-off between performance and guarantee
violation. Data models offer semantics that assist application
collaboration and improve conflict resolution efficiency [4].
Thirdly, although data models are strongly connected between
layers, they remain weakly synchronized at run-time and state
changes can lead to model inconsistencies. Finally, abstraction
hides critical debugging information that limit the ability to
localize bugs and associated states across layers [8], [9].

B. Semantic Web

The development of flexible data modeling frameworks is
a research challenge for multiple computer science domains.
Semantic web is a popular data modeling technology, which
provides data semantics and enables common understanding of
Web content between computers. Semantic web technologies
use resource description frameworks (RDF) [10] and ontolo-
gies to organize data and their relations using labeled graphs.
Using this data representation, multiple tools and frameworks
have been developed enabling various data manipulation and
modeling capabilities.

Data Modeling and Validation: A key component of a
knowledge-base is the ontology, a conceptualization of the
entities and relations in the application domain. An ontology
is specified using an RDF, like the RDF Schema (RDFS) [11]
and the Web Ontology Language (OWL) [12], which allows
the developer to specify the entities comprising the application
environment, their attributes and relationships. Furthermore,
semantic web technologies support data manipulation ca-
pabilities, like the Simple Protocol and RDF Query Lan-
guage (SPARQL) [13], which allow users to express complex
data relationship and efficiently query the knowledge-base.
Furthermore, semantic web technologies can accommodate
advanced data validation mechanisms, well beyond simple
type checking. For example, the Stardog [14] database offers
an Integrity Constraint Validation (ICV) mechanism, which
allows developers to inject SPARQL queries in a database,
which are constantly validated against the data at run-time.
Semantic databases rely on semantic reasoners to enforce
ontology and integrity constraints. For instance, if the data
violate the schema or an ICV rule, then the reasoner can either
reject data mutations or highlight the invalid data to the user.

https://github.com/SemanticSDN


of:Link rdf:type owl:Class.

of:hasSrcPort rdf:type owl:ObjectProperty;
rdfs:domain of:Link;
rdfs:range of:Port.

of:hasDstPort rdf:type owl:ObjectProperty;
rdfs:domain of:Link;
rdfs:range of:Port.

of:isActive rdf:type owl:DatatypeProperty;
rdfs:domain of:Link;
rdfs:range xsd:boolean.

of:hasLoad rdf:type owl:DatatypeProperty;
rdfs:domain of:Link;
rdfs:range xsd:long.

[] a icv:Constraint; icv:query """
SELECT ?path
(GROUP_CONCAT(?state) as ?state_list)
WHERE {
?apath a of:AvailPath;

of:hasState "Active";
of:realizes ?path.

?hop a of:PathHop;
of:belongs ?apath;
of:hasLink ?link.

?link a of:Link;
of:isActive ?state.}

GROUP BY ?path
HAVING (CONTAINS(?state), "False") """.

[] a r:SPARQLRule;
r:content """

IF {
?port a of:Port;

of:isUP ?state.
?link a ofLink;

of:hasDstPort ?port.
}
THEN {
?link of:isActive ?state.
} """.

Listing 1: A schema (partial) specifying the
Link entity of our OpenFlow ontology.

Listing 2: An ICV rule evaluating if
a Path uses a Link with aninActive
status.

Listing 3: A SPARQL rule for
inferring the Link status from the
Port status.

As an example, Listing 1 presents a part of the Link
entity specification in our OpenFlow ontology. The on-
tology specifies two object properties of:hasSrcPort,
of:hasDstPort which specify the relation between
the Link and Port objects. Furthermore, the ontology
specifies two data properties with specific data types,
of:isActive and of:hasLoad, to represent the state
of an entity. As we will discuss in Section III, a
Link entity represents connectivity between two adja-
cent switches, while Path represents an established end-
to-end connection. A omprisesofatleastone{\ttof:
PathHop}entitywhih in turns is associated with exactly
one Link entity, using the relationship of:hasLink.

Furthermore, Listing 2 depicts an ICV rule. The rule vali-
dates data consistency between the topology and established
path state, ensuring that an active Path entity does not use an
inactive Link entity. The schema and the ICVs are inserted in
the database, prior to any data insertion. The semantic reasoner
continuously validates the data and detects any potential data
inconsistencies. The developer can choose either to forbid any
data mutation that violates the schema or an ICV or to allow
the data mutation and enforce consistency programmatically
at a later time.

Reasoning: High-level knowledge in an SDN control
stack is typically synthesized from low-level network infor-
mation. For example, link discovery in an SDN network
allows a controller to discover switch connectivity and treats
the network as a directed graph. Semantic web technologies
provide the ability to reason about new knowledge from
data using simple logic rules. Semantic Web Rule Language
(SWRL) is a low-level declarative programming language
based on first-order logic. SWRL [15] rules contain a set of
logically associated premises and a set of conclusions. When
the data in the database compute the premise part of the rule
to true, then the conclusions are added in the database. SWRL
rules are low-level and complex validation policies can be
quite verbose, while existing reasoners offer partial support
of SWRL standards. SPARQLRule is an alternative approach
to enable reasoning in a knowledge-base using the SPARQL
language. This form of inference is not currently standardized
and Stardog is the only semantic web software with integrated

support.
Listing 3 contains a sample SPARQLRule, used in our

OpenFlow ontology. This rule infers the state of a link entity
based on the state of the underlying ports. The rule consists
of two parts: IF and THEN, each containing a set of triple
matches. The triples in the IF part of the rule are matched
against the data of the knowledge base and the content of the
THEN part of the rule is inferred on every query. SPARQLRule
supports a subset of the SPARQL language and a rule can only
infer new knowledge (knowledge updates are not currently
supported in SPARQLRule).

Semantic web technologies offer a set of unique features
for NOS in comparison to alternative data management frame-
works. Graph databases, like Neo4j [16], provide rich graph
processing and traversal capabilities, but lack versatile data
validation and reasoning capabilities, available in knowledge-
base, like Stardog. Moreover, semantic databases allow appli-
cations to relation can be queried and modified in runtime the
same as for the data. Relational databases provide extensive
data validation mechanisms and carrier-grade implementa-
tions. Nonetheless, their consistency model is ill-suited for
a network control system, since the model forbids any data
manipulation leading to data inconsistencies. Network systems
are open world system and unobserved events (e.g. link
failures) can violate policy. Reasoners in semantic databases
decouple state from data validation; a semantic database allows
a topology state update to violate internal data consistency and
the application is responsible to identify a strategy to mitigate
the inconsistency using the current state of the system.

III. REASONET DESIGN

In this section, we elaborate on the proposed ontology for
OpenFlow technologies (§ III-A) and present the architecture
of ReasoNet (§ III-B).

A. Towards an OpenFlow Ontology

Ontologies are a key component of semantic web applica-
tions. The proposed system defines an extensible ontology to
model all the layers of a control stack. The core ontology
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Fig. 1: The OpenFlow ontology model is extended to support the learning switch and the QoS intents usecases. The addition
of the Path, AvailPath and PathHop concepts to model the connectivity requirements of control applications. Host and
PathFlow extend the OpenFlow ontology for implementing the learning switch service.

entities captures the details of the OpenFlow protocol 2 and
network connectivity and path information. Control applica-
tions can extend the ontology by introducing new concepts,
relations and constraints at load-time and run-time.

Figure 1 presents the concepts of the proposed core
ontology, grouped by the service responsible to maintain their
consistency. The topology group contains five major concepts,
Port, Group, Table, Queue and Switch which reflect
the data of the PORT_DESCRIPTION, GROUP_DESC,
TABLE_DESC, QUEUE_DESC and FEATURES_REPLY
OpenFlow message types, respectively. Furthermore, the
group contains a Link concept modeling the connectivity
information inferred by the topology discovery service (LLDP
packet injection) of the controller. In addition, the Link
concept maintains load and capacity information. The flow
group models the switch flow tables. A Flow concept models
FLOW_MOD messages. Each Flow connects to one Match
object, modeling the matching tuple, and multiple Action
objects, modeling traffic manipulations. Our ontology does
not currently support METER tables, since their support is
limited.

In addition to elementary OpenFlow support, the ontology
models network connectivity for control applications. The
Path concept models end-to-end Port connectivity. Since,
the SPARQL language standards (v1.1) has limited graph
traversal capabilities, the ontology uses the AvailPath
and PathHop concepts to model the individual hops of an
end-to-end path. Specifically, AvailPath object represents
alternative paths between the source and destination Ports
of a Path concept. AvailPaths are computed using an
external graph processing service and inserted in the database
upon a new path request. Finally, the PathHop concept
associates an AvailPath object with a Link object. An
AvailPath object is connected with an ordered list of
PathHops, reflecting the individual hops of the path.

Finally, the Learning Switch group is an example ontology
extension. A learning switch application maintains a list of the
MAC and IP addresses of all network hosts as well as the flows
interconnecting them. We model this information using the

2currently supporting version 1.3 [17], but can be easily adapted to support
other protocol versions
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Fig. 2: ReasoNet architecture.

Host and PathFlow concepts. Specifically, a Host extends
the Port concept and adds IP address information, while
the PathFlow concept extends the Flow and associates
PathHop with installed flows.

B. ReasoNet Architecture

The architecture of ReasoNet is depicted in Figure 2.
ReasoNet comprises of three functional blocks: the NOS, the
Applications and the Knowledge database.

The ReasoNet NOS offers five core services to Applications.
The TopologyService offers topology discovery and populates
the knowledge-base with network topology information. The
FlowService module abstracts flow table access for applica-
tions and updates the knowledge-base with flow-level statistics
in fixed intervals. In addition, it ensures consistency between
the switch flow tables and the flow entities in the knowledge-
base. The PathService module provides path computation ca-
pabilities to control applications. The StargodService module
offers low-level knowledge-base access to other NOS services
and applications and allows them to extend the data model
and insert data validation rules at boot time.

Finally, the ConflictManager service allows applications to
insert data validation rules and checks the integrity of the
database during data updates. If a rule is invalidated, then the
service notifies the appropriate Application, in order to resolve
the data inconsistency. An example of an integrity check is
presented in Listing 4. The query returns all the switch flows
with overlapping match subspace and priorities. Any flow



SELECT DISTINCT ?switch ?flow1 ?flow2 WHERE{
?switch a of:Switch; of:hasFlow ?flow1; of:hasFlow

?flow2.↪→

?flow1 a of:PathFlow; of:hasPriority ?priority1.
?flow2 a of:PathFlow; of:hasPriority ?priority2.
?flow1 ?match_field1 ?value1.
?flow2 ?match_field2 ?value2.
?match_field1 rdfs:subPropertyOf

of:flow_match_fields.↪→

?match_field2 rdfs:subPropertyOf
of:flow_match_fields.↪→

FILTER (?flow1 != ?flow2 && ?priority1 =
?priority2)↪→

{FILTER (NOT EXISTS {?flow1 ?match_field2 ?x})
FILTER (NOT EXISTS {?flow2 ?match_field1 ?y})}
UNION {FILTER (?match_field1 = ?match_field2 &&

?value1 = ?value2)}↪→

} GROUP BY ?switch ?flow1 ?flow2

Listing 4: A SPARQL query reporting flow pairs with over-
lapping match subspaces. The query is used by the Conflict-
Service to detect flow-level policy conflicts.

conflicts are propagated to the FlowService module, which
contains code that synthesizes the individual flow actions of
the overlapping flows, based on the network manager’s policy.

ReasoNet uses the Apache Tinkerpop [18] framework to
enhance its graph processing capabilities. The Stardog devel-
opers provide a Tinkerpop client driver to enable seamless
integration. The Tinkerpop service allows ReasoNet to over-
come the limited graph processing capabilities of the Stardog
SPARQL engine.

The ReasoNet architecture can be integrated with any avail-
able NOS. For our straw-man implementation we used the
event engine and the OpenFlow parsing capabilities of the
Ryu controller. Ryu offers a simple and extensible architec-
ture, in comparison to similar production NOSes, while the
adoption of Python as the implementation language allowed
rapid prototyping for our framework. ReasoNet service and
applications are implemented as RyuApplication modules.

IV. REASONET IN ACTION

To demonstrate the expressiveness of ReasoNet, we present
and evaluate in this section the implementation of two ad-
vanced network control functions, namely a learning switch
application (§ IV-A) and a QoS-oriented declarative policy
engine (§ IV-B). We evaluate ReasoNet using a quad-core
Xeon Server (E5-1603) with 16 GB of memory and running
Ubuntu 14.04. We use the Mininet platform (v2.2) and the
Open vSwitch software switch (v2.5) to emulate various
topologies and traffic conditions. ReasoNet uses the OpenFlow
parsing capabilities and event engine of the Ryu controller
(v4.17). The ontology is stored in a Stardog knowledge base
instance (v5.02) connected to a Tinkerpop graph processing
service (v3.0.2).

A. Learning switch

The learning switch functionality is a reference OpenFlow
control function, implemented by all OpenFlow controllers.
The application passively monitors all unmatched traffic on

SELECT DISTINCT ?flow
WHERE {
?switch a of:Switch; of:hasFlow ?flow.
?flow a of:PathFlow; of:in_port ?in_p;
of:hasAction ?action.

?action of:toPort ?to_p.
?in_p a of:Port; of:isUP ?isUp1.
?to_p a of:Port; of:isUP ?isUp2.

FILTER (?isUp1 = "false"^^xsd:boolean ||
?isUp2 = "false"^^xsd:boolean)

}

Listing 5: A SPARQL query detecting invalid flows due to
link failures. A non-empty result denotes rule violation.

edge switches and records triples of source IP, MAC addresses
and receive switch port. For each unmatched Ethernet packet,
the application looks up the destination MAC address in its
MAC-port table, and, upon a successful match, the application
computes a path and transmit relevant FLOW_MOD messages to
establish connectivity. To avoid loops, the implementation in
ReasoNet runs an ARP proxy, which responds to ARP requests
if the application know the MAC-IP address association.

Our learning switch implementation re-use the OpenFlow
protocol parsing capabilities of the Ryu platform and the
application relies on PACKET_IN events from the main
Ryu event thread. Furthermore, the application extends the
core data model with two additional concepts: Host and
PathFlow. The Host concept is a subclass of the Port
concept and stores MAC-IP associations. The PathFlow
stores associations between installed Flow objects and Path
objects.

Upon a PACKET_IN reception, the application extracts and
stores any MAC-IP association. If the packet is an ARP request
and the application has an association in the knowledge base,
it injects an ARP response using a PACKET_OUT message.
In case of an IP packet with a known destination address,
a path establishment process is initiated. The application
requests from the PathService to populate the database with
all available paths between the two end-points. Subsequently,
it selects the path with the lowest path count and requests
from the FlowService to install appropriate flow entries in the
switches’ flow tables.

Path-based learning switch application ensure path connec-
tivity during the occurrence of low-level topological events,
like link loss or host mobility. The topology discovery module
monitors and stores such events in the knowledge base and
individual applications are responsible to detect potential state
inconsistencies and resolve them. ReasoNet applications use
ICV rules, through the ConflictManager module, to automate
this process. Listing 5 depicts the query of an ICV rule which
retrieves all PathFlow objects and inspect the state of the
input and output ports. If any of the ports is offline, then
the query will raise an inconsistency in the ontology. The
learning switch application will remove all invalid flows from
the network and select the next best AvailPath to realize
the path.
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Fig. 3: Path reconfiguration latency (5th, 50th and 95th per-
centile) for ReasoNet (right) and ONOS (left) during a link
failure. The percentiles for some topology-controller combi-
nations are extremely close and unnoticed in the graph.

Discussion: Scalability is a key challenge for seman-
tic web technologies. The scalability limitations of semantic
web databases are defined by multiple factors, including: the
database implementation, the ontology design, the query opti-
mizer, the number of installed tuples, and inference/validation
rules. To evaluate the scalability of ReasoNet, we compare
the path reconfiguration performance of the ReasoNet learning
switch application and the ONOS path intent subsystem [19],
a mature SDN controller maintained by the Open Network
Foundation (ONF). The ONOS intent subsystem supports
automated path establishment, when possible, between MAC
address pairs (add-host-intent), similar to our learning
switch application. In our experiment, we generate ICMP
traffic between two random end-hosts of the topology and
disable a random switch port, which is part of the established
path. We measure the latency to re-establish path connectivity,
which we define as the time between the transmission of
the PORT_STATUS message by the Open vSwitch instance
that manages the disabled port and the time the controller
sent the required FLOW_MOD messages to configure the new
path between the two hosts. In order to ensure measurement
accuracy, we use the monitor option of the ovs-vsctl
command to extract OpenFlow message timestamps.

Our evaluation uses three topologies: a 4-port fat-tree (FT)
topology, a 4x5 Torus (TR) topology and the custom topology
from Figure 4. We repeat the experiment 20 times for each
controller-topology combination and report the 5th, 50th and
95th percentiles of path reconfiguration latency in Figure 3.
From the results we note that ReasoNet has an inflated path
reconfiguration latency in comparison to the ONOS platform,
however, the latency difference is upper-bound at 150 msec.
These latency differences can be attributed to the serialization
delays when transmitting information between a ReasoNet
instance and the Stardog database. ONOS uses an in-memory
data storage service, running as a thread within the ONOS
runtime. In contrast, ReasoNet must use the OS network stack
to communicate with the Stardog database. Furthermore, such
latency differences can be further minimized by improving the
integration of the knowledge-base with our controller.

B. QoS policy engine

A key SDN goal is the realization of new high-level pol-
icy abstractions by synthesizing low-level control interfaces.
Declarative policies is a policy paradigm that has recently
gained significant interest in the SDN community. Unlike
Event-Control-Action (ECA) policies, which explicitly de-
fine the required transformation in the network configura-
tion, declarative policies describe the criteria to choose an
acceptable network configuration state (intent) and delegate
the responsibility to define the required transformation to
the controller. Advanced NOSes, like ONOS [19] and Open-
DayLight [20], provide built-in support for similar policy
paradigms.

ReasoNet implements an application supporting a policy
engine for QoS intents. The application exposes a simple
restful API, which allows external applications to inject path
requests with QoS requirements. An intent request describes
a flow match, an ingress and an egress switch and port and
a specific bandwidth goal. The application is responsible to
instantiate an end-to-end path that fulfill these requirements at
run-time.

The intent application extends the ontology with two new
concepts: QoSPath and QoSFlow. The QoSPath concept is
a subclass of the Path concept and adds a status, match and
bandwidth property. The status property is an enum type which
reflects if a QoS path is pending (the application evaluates
if the request can be fulfilled), installed (the application has
installed the required flows), or failed (the application cannot
fulfill the path request). The QoSFlow concept associate a
QoSPath object with the respective Flow objects.

On a path request the application requests from the Path-
Service to populate the database with all the alternative
AvailPath objects realizing the end-to-end path. In addi-
tion, the application uses the query in Listing 6, to select
an AvailPath object which (i) has sufficient capacity to
accommodate the path request and (ii) uses links with low
utilization. The application registers similar integrity checks,
as Listing 5, to validate the liveness and resources of all
established paths.

S1 S3

S2 S4

S5

Host2

Host1

Host3
Host4100Mbps

100Mbps200M
bps

200Mbps
200

Mb
ps

Fig. 4: The random topology used for the evaluation of
ReasoNet.

Discussion: To demonstrate the functionality of our QoS
policy engine application, we recreate in Mininet the topology



SELECT ?availPath (COUNT(?hop) AS ?hop)
(MIN(?capacity - ?load) AS ?pathbw){

of:pathRequest a of:QosPath;
of:requiresBW ?bw.

?availPath a of:AvailPath;
of:realizes of:pathRequest.

?hop a of:PathHop;
of:belongs ?availPath;
of:hasLink ?link.

?link a of:Link;
of:hasLoad ?load;
of:hasCapacity ?capacity.

} GROUP BY ?availPath HAVING(?pathbw > ?bw)
ORDER BY DESC(?pathbw) ?hop
LIMIT 1

Listing 6: A SPARQL query selecting an AvailPath
object that realize the QoSPath object with label
of:pathRequest. The query selects a path with the lowest
average link load over its links.
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Fig. 5: TCP throughput (1 min monitoring window) during
a QoS intent update scenario. The priority flow starts trans-
mission at t=20 sec and at t=40 sec the manager updates its
bandwidth goal, triggering the control application to migrate
the flow over a path with higher capacity (200Mbps).

depicted in Figure 4. We generate two steady-state TCP flows:
a priority flow between hosts 1 and 2 and a normal traffic
flow between hosts 3 and 4. We generate TCP traffic using
the Iperf traffic generation tool. The QoS policy engine is
initialized with a set of QoSPath rules with a zero mini-
mum bandwidth guarantee. The rules effectively enable best-
effort connectivity between hosts. Because both paths have
no bandwidth guarantees, they both use the Path s1-s3-s5,
since the path computation query favors shorter paths. The
normal flow starts at time t=0 sec, while the priority flow
starts data transmission at time t=20 sec. At time t=40 sec we
update the QoSPath rules for the priority flow and increase
the minimum bandwidth guarantee to 120 Mbps.

Updating the minimum bandwidth of the QoSPath entity,
violates initially one of the ICVs of the QoS application; the
existing path capacity is 100 Mbps, insufficient to fulfill the
120 Mbps request, and the NOS will report this violation to
the application using a registered callback. Using the query in
Listing 6, the QoS application will force the priority flow to
follow the longer path s1-s2-s4-s5, providing higher available
bandwidth. As seen in Figure 5, the transition to the new

path incurs no performance degradation on both flows. The
new path allows the priority flow to fully utilize the available
capacity of the new path (200 Mbps).

V. RELATED WORK

In this section, we review the recent related works looking
into the different aspects including: data models for NOSes,
network modelling standardization and application develop-
ment APIs efforts.

SDN Data Models: ONOS and OpenDayLight (ODL), the
most mature open source NOS frameworks, follow signifi-
cantly different data modeling approaches. ONOS relies on the
JAVA language to describe core NOS interfaces and objects.
ODL uses the YANG data modeling language to specify
service objects and interfaces. A YANG compiler generates
the appropriate JAVA objects and interface files and marshaling
code during compilation, while the interfaces can be exposed
seamlessly through the ODL Restfull API. Furthermore, ODL
uses a Model-Driven Service Adaptation Layer [21] (MD-
SAL) to aggregate all active models and interfaces and allow
entities to bind to interfaces at run-time. In comparison,
ReasoNet offers richer modeling capabilities, supporting data
integrity validation and run-time data model adaptation.

Recently, NOS implementations actively explore the ap-
plicability of declarative policy languages in SDN networks.
Declarative policies define high-level policy goals, which must
be fulfilled by the NOS at run-time. ONOS provides low-
level intent support as a core service and applications can
define end-to-end path intents between hosts or ports. ODL
provides three different declarative policy frameworks. Firstly,
ODL has built-in support for NEMO [22], a declarative policy
language developed by Huawei. NEMO defines three primitive
type: Node, Connection and Flow. Using these primitives, an
application can describe its connectivity requirements, as well
as, define flexible monitoring and notification functionalities.
The ODL Network Intent Composition (NIC) [23] framework
defines a set of intents to control path establishment. A user
can describe whether different end-points or services can
communicate over the network using NIC. ODL Group-Based
Policy (GBP) [24] extends the NIC access control model
in order to match the requirements of a cloud environment.
GBP policies describe how (contracts) different network end-
points (e.g., application, tenant) can connect. In comparison to
existing intent frameworks, ReasoNet offers greater flexibility
since it allows control applications to extend the primitives of
the intent framework.

Table I compares the different data modeling mechanisms
in modern NOS. Our analysis focuses on the aspects of exten-
sibility, conflict management and integrity constraint support.
From the table entries, we identify that the ODL MD-SAL,
the NEMO language and our system provide the best feature
set. Nonetheless, the ODL MD-SAL modeling framework
lacks support for high-level integrity constraints across models,
while the NEMO language is constraint by the set of primitive
language types.



NOS Language
Support

Extensibility Conflict
Manage-
ment

Constraints

ONOS Intent CLI and
API

Low None Type, Resources

ODL MD-SAL Yang model High None Type
ODL+NEMO NEMO

SDL
High None Type, Resources

ODL+NIC Yang
Model

Low None None

ODL+GBP [24] UI and API Low None None
ReasoNet SPARQL High Programmable Type, State,

Resource

TABLE I: Feature comparing of data modeling mechanisms
in open-source NOS.

Network Modeling and Ontologies: Multiple standardiza-
tion bodies have developed information and data models for
network infrastructures. The Internet Engineering Task Force
(IETF) runs multiple working groups developing network
data models. The IETF NETCONF data modeling language
(netmod) WG develops YANG models [2] to control network
properties from the physical layer (e.g., Flexi-Grid optical net-
works [25]) up to the application layer (e.g., firewall [26]). The
Open Network Foundation (ONF) is actively developing data
models and protocols for all SDN network control layers. Of
interest to our work is the Core Information Model (CIM) [6],
a generic and extensible information model aiming to converge
control across southbound interfaces.

Semantic web technologies have been applied previously
to model networks and many specialized network ontologies
exist. The Network Markup Language (NML) [27] is an ontol-
ogy converging network control and configuration for different
physical and network layer technologies. The Infrastructure
and Network Description Language (INDL) [28] extends NML
with support for computation resources. The NOVI informa-
tion model [29] adopted INML to model computational and
network testbed resources for the service deployment.

NML and its extensions have been used to represent net-
work maps and to exchange topology informations between
different administrative domains. Effectively, NML is an in-
formation model, abstracting functional capabilities across
technologies from technology-specific details. Unfortunately,
lack of technology-specific data models and drivers limits its
applicability. Pantuza et al. [30] integrate the NML language
with the OpenFlow protocol, using the neo4j graph database.
Neo4j provides excellent support for graph processing, but it
lacks reasoning and consistency validation automation capabil-
ities. [31] uses semantic web technologies to model physical
substrate resources, service function chain and deployment
constraints for virtual function embedding.

Application Development APIs: Pyretic is an SDN pro-
gramming language using high-level services to abstract low-
level SDN functionality [32]. A Pyretic control application
effectively describes how to combine core control services
in order to realize the desired functionality. The modules
and the composition mechanisms are designed to guarantee
verifiable synthesis. However, the introduction of a new core

module must ensure compatibility with the API semantics
and language theory. Extensions may be required to ac-
commodate new capabilities. PANE [4] enables automated
and conflict-free network policy synthesis from the output
of control applications. Conflict-resolution uses hierarchical
policy trees, which are explicitly defined by the network
operator. FRESCO [33] is a network controller providing
secure composition of control applications in an SDN net-
work. The system uses a security enforcement kernel, through
which a network manager can define application priorities to
resolve policy conflicts. ReasoNet follows a similar approach
and enables a flexible conflict resolution mechanism, where
network managers can define conflict policies as SPARQLRule
rules and specialized functions can be implemented to resolve
policy conflicts.

VI. DISCUSSION AND CONCLUSION

In this paper, we have discussed the data modeling require-
ments of modern SDN control systems. We have identified
a number of limitations in the current solutions with respect
to consistency, extensibility and debugging. To address these
challenges, we advocated the adoption of semantic web tech-
nologies as a data modeling and management mechanism.
Towards this goal, we presented the first OpenFlow ontology
and ReasoNet, an SDN controller with support for automated
consistency validation and knowledge reasoning. We demon-
strated the ability of ReasoNet to support flexible control
application development, by elaborating on the design of two
control applications, namely a learning switch and a QoS
policy engine.

We believe that ReasoNet is a step towards the adoption
of extensible and feature-rich data modeling mechanisms by
SDN platforms. In our study, we limited our exploration on
wired Ethernet network technologies. Nonetheless, a number
of standardization bodies have developed detailed ontologies
of additional network technologies, like LTE [34] and sensor
networks [35]. Existing production SDN technologies provide
limited control below the data link layer. Semantic web
technologies can seamlessly introduce support for different
network technologies by using relevant ontologies. In addition,
semantic web technologies allow applications to delegate
subquery execution to other databases. This functional can
be exploited to provide the required information abstraction
when developing control application for multi-administrative
domains.

Our choice of semantic web technologies has highlighted a
number of limitations in existing semantic web tools. Firstly,
although the Stardog software can efficiently extract knowl-
edge by parsing the graph of the underlying database, it offers
limited graph processing capabilities. ReasoNet employs a
third-party graph processing framework to support its path
computation requirements. The Stardog developers currently
explore new extensions for their SPARQL query engine to
support compound graph traversal operations3. Secondly, dur-

3https://www.stardog.com/blog/a-path-of-our-own/

https://www.stardog.com/blog/a-path-of-our-own/


ing the development of our straw-man implementation we
identified a number of limitations in the specification of
validation rules using SPARQLRules, including the lack of
support for non-pure functions and nested queries in the IF
statement. Support for such features can significantly improve
the modeling capabilities for SDN control.
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