21,645 research outputs found
Microwave-induced resistance oscillations in a back-gated GaAs quantum well
We performed effective mass measurements employing microwave-induced
resistance oscillation in a tunable-density GaAs/AlGaAs quantum well. Our main
result is a clear observation of an effective mass increase with decreasing
density, in general agreement with earlier studies which investigated the
density dependence of the effective mass employing Shubnikov- de Haas
oscillations. This finding provides further evidence that microwave-induced
resistance oscillations are sensitive to electron-electron interactions and
offer a convenient and accurate way to obtain the effective mass.Comment: 4 pages, 4 figure
Analytical theory of dark nonlocal solitons
We investigate properties of dark solitons in nonlocal materials with an
arbitrary degree of nonlocality. We employ the variational technique and
describe the dark solitons, for the first time, in the whole range of degree of
nonlocality.Comment: to be published in Optics Letter
Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes
Enyzme kinetics are cyclic. We study a Markov renewal process model of
single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained
concentrations for substrates and products. We show that the forward and
backward cycle times have idential non-exponential distributions:
\QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in
reversible enzyme kinetics. In terms of the probabilities for the forward
() and backward () cycles, is shown to be the
chemical driving force of the NESS, . More interestingly, the moment
generating function of the stochastic number of substrate cycle ,
follows the fluctuation theorem in the form of
Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we
obtain the Jarzynski-Hatano-Sasa-type equality:
1 for all , where is the fluctuating chemical work
done for sustaining the NESS. This theory suggests possible methods to
experimentally determine the nonequilibrium driving force {\it in situ} from
turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure
Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice
Hybrid (exotic) mesons, which are important predictions of quantum
chromodynamics (QCD), are states of quarks and anti-quarks bound by excited
gluons. First principle lattice study of such states would help us understand
the role of ``dynamical'' color in low energy QCD and provide valuable
information for experimental search for these new particles. In this paper, we
apply both improved gluon and quark actions to the hybrid mesons, which might
be much more efficient than the previous works in reducing lattice spacing
error and finite volume effect. Quenched simulations were done at
and on a anisotropic lattice using our PC cluster. We
obtain MeV for the mass of the hybrid meson
in the light quark sector, and Mev in the
charm quark sector; the mass splitting between the hybrid meson in the charm quark sector and the spin averaged S-wave charmonium mass
is estimated to be MeV. As a byproduct, we obtain MeV for the mass of a P-wave or
meson and MeV for the mass of a P-wave meson, which are comparable to their experimental value 1426 MeV for the
meson. The first error is statistical, and the second one is
systematical. The mixing of the hybrid meson with a four quark state is also
discussed.Comment: 12 pages, 3 figures. Published versio
Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System
By combining adaptive modulation (AM) and automatic repeat request (ARQ) protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE) and packet error rate (PER) of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs) are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs) as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs
Thermodynamical quantities of lattice full QCD from an efficient method
I extend to QCD an efficient method for lattice gauge theory with dynamical
fermions. Once the eigenvalues of the Dirac operator and the density of states
of pure gluonic configurations at a set of plaquette energies (proportional to
the gauge action) are computed, thermodynamical quantities deriving from the
partition function can be obtained for arbitrary flavor number, quark masses
and wide range of coupling constants, without additional computational cost.
Results for the chiral condensate and gauge action are presented on the
lattice at flavor number , 1, 2, 3, 4 and many quark masses and coupling
constants. New results in the chiral limit for the gauge action and its
correlation with the chiral condensate, which are useful for analyzing the QCD
chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio
- âŠ