34,268 research outputs found

    A Circumbinary Planet in Orbit Around the Short-Period White-Dwarf Eclipsing Binary RR Cae

    Get PDF
    By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergoes an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i' = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.Comment: It will be published in the MNRA

    Summer snow extent heralding of the winter North Atlantic Oscillation

    Get PDF
    [1] Winter climate over the North Atlantic and European sector is modulated by the North Atlantic Oscillation (NAO). We find that the summer extent of snow cover over northern North America and northern Eurasia is linked significantly (p < 0.01) to the upcoming winter NAO state. Summers with high/low snow extent precede winters of low/high NAO index phase. We suggest the linkage arises from the summer snow-associated formation of anomalous longitudinal differences in surface air temperature with the subpolar North Atlantic. Our findings indicate the seasonal predictability of North Atlantic winter climate may be higher and extend to longer leads than thought previously

    Minimal field requirement in precessional magnetization switching

    Full text link
    We investigate the minimal field strength in precessional magnetization switching using the Landau-Lifshitz-Gilbert equation in under-critically damped systems. It is shown that precessional switching occurs when localized trajectories in phase space become unlocalized upon application of field pulses. By studying the evolution of the phase space, we obtain the analytical expression of the critical switching field in the limit of small damping for a magnetic object with biaxial anisotropy. We also calculate the switching times for the zero damping situation. We show that applying field along the medium axis is good for both small field and fast switching times.Comment: 6 pages, 7 figure

    Subelliptic Li-Yau estimates on three dimensional model spaces

    Get PDF
    We describe three elementary models in three dimensional subelliptic geometry which correspond to the three models of the Riemannian geometry (spheres, Euclidean spaces and Hyperbolic spaces) which are respectively the SU(2), Heisenberg and SL(2) groups. On those models, we prove parabolic Li-Yau inequalities on positive solutions of the heat equation. We use for that the Γ2\Gamma_{2} techniques that we adapt to those elementary model spaces. The important feature developed here is that although the usual notion of Ricci curvature is meaningless (or more precisely leads to bounds of the form -\infty for the Ricci curvature), we describe a parameter ρ\rho which plays the same role as the lower bound on the Ricci curvature, and from which one deduces the same kind of results as one does in Riemannian geometry, like heat kernel upper bounds, Sobolev inequalities and diameter estimates
    corecore