65 research outputs found

    On-Farm-Produced Organic Amendments on Maintaining and Enhancing Soil Fertility and Nitrogen Availability in Organic or Low Input Agriculture

    Get PDF
    Maintaining and enhancing soil fertility are key issues for sustainability in an agricultural system with organic or low input methods. On-farm–produced green manure as a source of soil organic matter (SOM) plays a critical role in long-term productivity. But producing green manure requires land and water; thus, increasing biodiversity, such as by intercropping with green manure crops, could be an approach to enhance the efficiency of renewable resources especially in developing countries. This article discusses soil fertility and its maintenance and enhancement with leguminous intercropping from four points of view: soil fertility and organic matter function, leguminous green manure, intercropping principles, and soil conservation. Important contributions of leguminous intercropping include SOM enhancement and fertility building, biological nitrogen (N) and other plant nutrition availability. Under a well-designed and managed system, competition between the target and intercropping crops can be reduced. The plant uptake efficiency of biologically fixed N is estimated to be double that of industrial N fertilizers. After N-rich plant residues are incorporated into soil, the carbon (C):nitrogen ratio of added straw decreases. Another high mitigation potential of legume intercropping lies in soil conservation by preventing soil and water erosion. Many opportunities exist to introduce legumes in short-term rotation, intercropping, living mulch, and cover crops in an organically managed farm system. Worldwide, long-term soil fertility enhancement remains a challenge due to the current world population and agricultural practices. Cropping system including legumes is a step in the right direction to meeting the needs of food security and sustainability

    Safety and Immunogenicity of a Malaria Vaccine, Plasmodium falciparum AMA-1/MSP-1 Chimeric Protein Formulated in Montanide ISA 720 in Healthy Adults

    Get PDF
    The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 ”g respectively, and 1 placebo group of 12 participants receiving the adjuvant only.The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1∶10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Responses of soil organic carbon cycle to land degradation by isotopically tracing in a typical karst area, southwest China

    No full text
    Background The loss of soil organic carbon (SOC) under land degradation threatens crop production and reduces soil fertility and stability, which is more reflected in eco-sensitive environments. However, fewer studies simultaneously compared SOC variations and ή13CSOC compositions under diverse land uses, especially in karst areas. Methods Soil profiles from two agricultural lands and a secondary forest land were selected to analyze SOC contents and their stable isotope composition (ή13CSOC) in a typical karst area located in southwest China to understand the response of the SOC cycle to land degradation. Moreover, the relationships between SOC contents and mean weight diameter (MWD) and soil erodibility (K) factor were comprehensively analyzed for assessing the response of SOC to soil degradation risk. Results The mean SOC content was found to be the lowest in abandoned cropland (6.91 g/kg), followed by secondary forest land (9.31 g/kg) and grazing shrubland (34.80 g/kg), respectively. Meanwhile, the ή13CSOC values exhibited the following trend: secondary forest land (mean: −23.79‰) ≈abandoned cropland (mean: −23.76‰) >shrubland (mean: −25.33‰). The isotopic tracing results suggested that plant litter was the main contributor to SOC in the secondary forest land. Whereas abundant nitrogen from goat feces enhanced plant productivity and resulted in additional accumulation of SOC in the grazing shrubland. Conversely, long-term cultivation led to the depletion of SOC sequestration by the loss of calcium. In surface soils, the fractionation of ή13CSOC were considerably affected by the decomposition of SOC by soil microorganisms and covered vegetation rather than agricultural influences. Conclusions The findings indicate that the cycling of SOC and soil stability in the calcareous soil of southwest China are largely regulated by different land uses and the presence of vegetation cover. The depletion of SOC and soil physical degradation pose significant challenges for abandoned cropland, particularly in the karst area, where land degradation is inevitable. Nevertheless, moderate grazing enhances SOC levels, which is beneficial to the land fertility maintenance in the karst region. Therefore, more emphasis should be placed on the cultivation methods and management strategies for abandoned cropland in the karst area
    • 

    corecore