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Abstract

Maintaining and enhancing soil fertility are key issues for sustainability in an agricultur‐
al system with organic or low input methods. On-farm–produced green manure as a
source of soil organic matter (SOM) plays a critical role in long-term productivity. But
producing green manure requires land and water; thus, increasing biodiversity, such as
by intercropping with green manure crops, could be an approach to enhance the efficiency
of renewable resources especially in developing countries. This article discusses soil
fertility and its maintenance and enhancement with leguminous intercropping from four
points of view: soil fertility and organic matter function, leguminous green manure,
intercropping principles, and soil conservation. Important contributions of leguminous
intercropping include SOM enhancement and fertility building, biological nitrogen (N)
and other plant nutrition availability. Under a well-designed and managed system,
competition between the target and intercropping crops can be reduced. The plant uptake
efficiency of biologically fixed N is estimated to be double that of industrial N fertiliz‐
ers. After N-rich plant residues are incorporated into soil, the carbon (C):nitrogen ratio
of added straw decreases. Another high mitigation potential of legume intercropping lies
in soil conservation by preventing soil and water erosion. Many opportunities exist to
introduce legumes in short-term rotation, intercropping, living mulch, and cover crops
in an organically managed farm system. Worldwide, long-term soil fertility enhance‐
ment remains a challenge due to the current world population and agricultural practices.
Cropping system including legumes is a step in the right direction to meeting the needs
of food security and sustainability.

Keywords: soil fertility, nitrogen, living mulch, organic agriculture, leguminous inter‐
cropping
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1. Introduction

Organic or low input farm is a production system that sustains agricultural productivity by
avoiding or restricting synthetic fertilizers and pesticides. It takes soil fertility, which governs
the plant productivity of the soil, as a key measure in gaining an optimum yield from a long-
term point of view. The establishment and maintenance of soil fertility is a major issue within
organic or low input farming systems.

Incorporation of organic residues and manures are key approaches to many integrated soil
management strategies [1], including that of nitrogen, one of the key plant nutrients in
organically or low input managed farming systems. Green manure, manure, and litter from
animal husbandry are considered as soil amendments and major mineral nutrient sources after
mineralization. Increased soil organic matter (SOM) is a key issue in maintaining soil fertility
and provides plant nutrients. Thus, SOM and N availability are important indices of soil
fertility [2]. However, taking economic issues into consideration, industrial N fertilizer is of
more benefit than biological N fixation in current agricultural management [3]. In 1987, James
indicated that from 1960 to 1977 (during the “green revolution”), legume seed production
declined dramatically from 170,000 to 70,000 tons worldwide [4]. Because planting legumes
requires land, water, and other resources, the ability to fix N is limited by agricultural
conditions.

However, due to the contribution to soil fertility through its effects on the physical, chemical,
and biological properties of soils, the role of green manure has been rediscovered and is
receiving more attention in soil fertility maintenance and enhancement by farmers, agrono‐
mists, and governments around the world. Under current conditions, several opportunities
exist for the use of legumes in short-term situations, such as simple rotation, double cropping
or intercropping, and cover crops [5].

The method of growing more than one agricultural species mixture together, as intercrops, is
generally regarded as one measure to increase the productivity of crop systems. Cover
cropping can reduce soil and water erosion, the process by particles detached from the soil
mass are transported by running water and wind. Intercropping enhances ecosystem services
including crop yield, N use efficiency, pest and weed management, and reduces nitrogen losses
to the environment [6]. Thus, the method of intercropping with green manure is of interest in
organic or low input farming systems, especially in non-animal husbandry farm systems.

Regarding the question of acceptable long-term productivity with major crop rotation or in‐
tercropping with legumes [7], this article discusses soil fertility and the functions of SOM,
leguminous green manure as a source of SOM, and its capability to modify the C:N ratio of
added organic matter. Increasing N availability and other plant nutrients, the efficiency of
intercropping and living mulch, and soil and water conservation are also considered. The
objective of the review is to present a way to maintain and enhance soil fertility with green
manure intercropping in an organically managed farming system.
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2. Comprehensive soil fertility and the functions of SOM

2.1. Soil fertility aspects

Soil fertility is the crop productivity capacity of the soil due to the supply of plant nutrients
and growth media. Long-term productivity can be taken into consideration instead of the yield
in one growing season or year. Soil fertility includes sustainable availability and balanced
forms of plant nutrients, soil water conservation, and aeration. It covers three aspects: physical,
chemical, and biological properties. The physical property aspects mentioned in Table 1 [8]
are related to soil texture and structure, which are related to the organization of particles and
pores, reflecting effects on root growth, speed of plant growth, and water infiltration. Physical
indicators include depth, bulk density, porosity, aggregate stability, texture, and compaction
[9]. Loss of soil structure can occur through slaking and dispersion, often linked to intensive
cultivation [10], compaction, and vital loss of the pore size distribution needed to maintain soil
fertility [1]. Aggregates are the most profitable structural units of soil, offering water, air
balance for root development, and the synthesis of complex organic compounds binding soil
particles into structural units directly helps to build a loose, open, granular state with medium-
to large-sized pores [11].

Chemical aspects include pH, salinity, organic matter content, phosphorus (P) availability,
cation exchange capacity, nutrient cycling, and the presence of contaminants, such as heavy
metals, organic compounds, and radioactive substances. These indicators determine the
presence of soil-plant-related organisms, nutrient availability, water for plants and other
organisms, and the mobility of contaminants [9].

Physical Chemical Biological

Texture,
Depth of topsoil,
Bulk density,
covers soil aeration,
water and nutrient holding capacity,
water infiltration,
crust,
temperature,
tillage condition.

Organic C,
Total N,
pH,
Electrical conductivity,
Extractable N, P, K,
Micro- and macronutrients availability,
Salinity.

Microbial biomass C and N,
Potentially mineralizable N,
Soil respiration,
Soil born pathogen repression.

(Modified from Wienhold et al. [8]..)

Table 1. Physical, chemical, and biological soil indicators that may be included in a minimum data set for assessing
soil quality.

Biological indicators include biomass of micro- and macroorganisms, their activities, and
functions. Concentrations or populations of earthworms, nematodes, termites, and ants, as
well as microbial biomass, fungi, actinomycetes, or lichens, can be used as indicators [9]. Soil
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biological properties are based on the soil being a living system; many kinds of organisms are
involved in complex biological, chemical, and physical processes. A living soil is regarded as
a healthy soil and favorable to plant growth because of the organisms’ roles in soil development
and conservation, specifically nutrient cycling and determining soil fertility.

2.2. The roles of soil organic matter on soil fertility

Organic and low input agriculture are regarded as a procedure to maintain SOM and soil
fertility. In Switzerland, a long-term trial biodynamic system was reported to show a stable C
content, while a C loss of 15% in 21 years was measured for the conventional system control.
In the United States, a field trial showed fivefold higher C sequestration in an organic system
(i.e., 1218 kg of C ha–1 year–1) versus conventional management [12,13]. Lal stated that the rate
of organic C sequestration in soil with the adoption of recommended technologies depended
on soil texture, soil structure, rainfall, temperature, farming system, and its management [14].
He also found that addition of 1 ton of degraded crop organic matter to the soil may increase
crop yield by 20-40 kg ha–1 for wheat, 10-20 kg ha–1 for maize, and 0.5-1 kg ha–1 for cowpeas.
Apart from enhancing food security, C sequestration also has the potential to offset fossil fuel
emissions by 0.4-12 tons of C year–1 or 5-15% of global fossil fuel emissions [14].

Additionally, organic matter has both direct and indirect effects on the availability of nutrients
for plant growth. The decay of organic matter liberates these nutrient elements, making them
available to the succeeding crop. It is a major source of P and sulfur (S), and essentially the sole
source of N through its mineralization by soil microorganisms. Organic matter serves as a
source of energy for both macro- and microfaunal organisms. Earthworms and other faunal
organisms are strongly affected by the quantity of plant residue material returned to the soil.
During the decomposition process of organic tissue, soil particles are attached together as
aggregates. SOM enhances the nutrient buffering capacity and the microbial activity, both
strengthening soil fertility [15]. Additionally, organic matter contributes 30–70% to the cation
exchange capacity, which allows soil particles to hold nutrients, thus preventing them from
leaching out. Also, as a buffer, humus exhibits buffering over a wide pH range [16].

Water infiltration and root growth are promoted by lower bulk density, which tends to
decrease with organic matter additions [11]. Organic matter has higher water-holding capacity
(by 20 times) versus clay. Aggregate stability and water infiltration are increased by organic
matter additions. This positive effect on the water-capturing capacity of the soil is likely to
increase in importance with climate change, [15] because a higher water-capturing capacity
strengthens resilience to droughts and reduces the risk of floods [17]. Thus, the need for
irrigation is lowered, which has an additional adaptation and mitigation effect [15,18].

SOM enhances the nutrient buffering capacity and microbial activity, both strengthening soil
fertility [15]. The addition of organic matter helps to protect the soil from erosion, acts as a
buffer against dramatic changes in acidity, alkalinity, and salinity. The overall effects of organic
matter are far greater than the simple analysis of its constituent nutrients; indeed, it is the
engine that drives all the biological processes in the soil [19]. Increased SOM and microbial
activity in organically farmed soils results from a combination of enhanced C inputs during
fertilization and increased grass cover [20].
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Figure 1. Soil organic matter contributes to soil fertility.

3. On-farm–produced organic amendments

3.1. SOM source and modified C:N ratio of added residues

Leguminous green manure has long been used as a SOM source as a component of cropping
system in Africa, Asia, and Latin American. Cover crops and intercropping increase C
sequestration in the soil [21]. Another possible benefit of legumes is the result of N fixation by
the root nodules, which the amount of biological fixed N is a somewhat contentious issue in
some case studies, but most of the organic N can be available to plants after residues have been
composted [22]. Generally green manure can produce a dry weight of 5-9 tons or more biomass
ha–1 year–1; about 40% of dry matter is C and 2-4% is N. While the N productivity of several
major cultivated legumes has been reported as from 80 kg (berseem clover) to 190 kg (subc‐
lover) ha–1 [23-25]. The ability of biological N fixation ranges from 40 to 200 kg in aboveground
tissues ha–1 due to the species of legume, bacterial strain, and agricultural conditions, such as
climate and soil (Table 2).

Factors that influence the ability of microorganisms to break down added plant materials
includes the C:N ratio of organic matter and components of organic C and N [26]. The C:N
ratio of plant tissue reflects the kind and age of a plant from which it was derived. Non-legume
plants may have a high C:N ratio, over 60 (cow straw), up to even 250 (wood tissue) [27,28].
Non-leguminous green manure with high a C:N ratio (over 25), will cause microorganisms to
tie up available N in the soil. Thus, added materials with C:N ratios above 25:1 can result in N
being bound by soil microbes in the breakdown of C-rich crop residues, thus pulling N away
from the root zone of crop plants. Legumes usually have a low C:N ratio (about 10-15) and can
help to modify the SOM C:N ratio to an adequate level. The optimal C:N ratio for rapid
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decomposition of organic matter is between 15:1 and 25:1 [29]. The addition of N-rich plant
residues, such as legume plants, to aid the decomposition process may be advisable with these
high-C residues: the lower the C:N ratio, the more N will be released into the soil for immediate
crop use [30].

Crop Biomass*

(tons ha–1)
Nitrogen
(kg ha–1)

Sweet clover 4.3 130

Berseem clover 2.7 75

Crimson clover 3.5 108

Hair vetch 4.3 118

Subclover 5.4–10.1 184

*Dry weight of plant aboveground material (sources: [2325])

Table 2. Yearly average biomass yields and nitrogen yields of several legumes.

3.2. Intercropping with green manure

Intercropping refers to multiple crops planted at same time on the same land, growing and
interacting with each other during the whole or part of the growing season within a crop system
[31,32]. Intercrops or mixture crops influence the farming system in ways including the lower
density of each species helping to reduce plant pathogen infection opportunities, raising land
productivity as a result of reducing the effects of unsuitable conditions, which may be not so
unsuitable to other intercrops, positive effects on weed control, border effects, and enhancing
plant nutrient and soil humidity use efficiency. Intercropping can be regarded as a method of
weed suppression and offering habitats for beneficial organisms. According to space arrange‐
ments and temporal practices, intercropping is commonly divided into four subcategories [31]:

1. Row intercropping: growing two or more crops at the same time with at least one crop
planted in rows.

2. Stripe intercropping: growing more than one crop together in stripes wide enough to permit
separate crop production using machines but close enough for the crops to interact with
each other.

3. Mixed intercropping: growing two or more crops with no distinct row arrangement.

4. Relay cropping: planting a second crop in a standing crop at a time when the standing crop
is at its reproductive stage but before harvest. According to plant density or land features,
the crop with high seeding rates is called the major crop, and the other crop is the
secondary crop.

Crop mixtures may gather more light and plant nutrients than pure standing crops, as a result
of differing root depth and stem height. Generally, the land equivalent ratio (LER) is one of
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the major measures to judge how complementary crops are under intercropping. The mathe‐
matical equation is stated as [33]:

LER = (Yij + Yji / Yjj + Yii),

where Yij is the grain yield per unit area of species i grown in a mixture with species j, Yii is
the grain yield per unit area of species i grown in a pure stand, Yji is the grain yield per unit
area of species j grown in mixture with species i, and Yjj is the grain yield per unit area of
species j grown in a pure stand.

When the LER is below 1, it indicates that competition exists between different components
rather than them being complementary. Generally, under a well-managed intercropping
system, the LER is 1.2-1.5 and sometimes even above 1.5. These results are due to the rational
use of natural resources for crop growth. As Paolini et al. reported, after 2-year case studies
on mixture crops of sunflower and chickpea, total LER figures averaged 1.16 as to aboveground
biomass yield and 1.25 as to grain yield [34]. They also pointed out that an unfavorable climate
for one species is not so unfavorable to another. The conclusion can be made that when the
climate or other agricultural factor becomes the key limiting factor for one crop, the other crop
will likely get sufficient plant nutrients and soil moisture water supply; one species will be
more tolerant of the unfavorable condition than the other.

Altieri found that in Mexico, 1.73 ha of land had to be planted with maize to produce as much
food as 1 ha planted with a mixture of maize, squash, and beans [35]. Additionally, maize +
squash + bean polyculture can produce up to 4 tons ha–1 of dry matter for plowing into the soil
as compared with 2 tons in a maize monoculture. In Brazil, a maize or sorghum mixture with
cowpeas or beans can lead to LER values of 1.25-1.58 [35]. Sometimes under intercropping
management, a major crop cannot get the maximum yield obtainable in a monoculture due to
competition from the other crop or a lower density versus a pure stand. By interplanting,
farmers achieve several production and conservation objectives simultaneously [36]. Polycul‐
tures produce more combined yield in a given area than could be obtained from monocultures
of the component species; sometimes, the LER can be above 1.5, although the yield variability
of cereal + legume polycultures are much lower than that for monocultures of the components
[37]. The intercrop treatments represented the highest LER was 1.52 for baby corn/pea
intercropping system [38]. And other maize/bean intercropping achieved LER values were
1.76 and 1.92 [39]. Cover cropping is also considered as a the practice of growing pure or mixed
strands of legumes, cereals, or natural vegetation to protect the soil against erosion, ameliorate
soil structure issues, enhance soil fertility, and suppress pests, including weeds, insects, and
pathogens [31]. The cover crop approach has been used for thousands years ago and is
regarded as a sustainable method of agricultural production.

3.3. Living mulch

Living mulch refers to a legume cover-crop, which is undersown with an annual crop.
Common living mulches include white clover, hairy vetch, and red clover. A living mulch can
improve soil structure and water penetration, prevent soil erosion, modify the microclimate,
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and reduce weed competition [40]. An ideal crop occupies underused time or space in an
existing system. It does not compete with the cash crop for light, water, or nutrients, and
attracts beneficial organisms, while keeping harmful pests away. It should be readily estab‐
lished and grow rapidly. It should produce an abundant growth of both shoots and roots in a
short time, and its growth habits should encourage ground cover soon after its establishment
[41]. Common living mulches can offer soil cover, especially during the seedling period and
after harvest of the target crop when the crop plant does not cover most of the soil surface.
Subclover planted as a living mulch was able to regenerate and provide the succeeding crop
with abundant and N-rich residues [42]. The main benefits of living mulches include enhance‐
ment of soil structure, improvement of soil fertility, and positive effects on pest management
and environmental quality [43].

Changing from a monoculture to an intercropping system requires several important man‐
agement practices based on natural laws. Successful management requires investment in
experience and research to modify the system into an economically acceptable, ecologically
sustainable, and technologically practicable one. In the case of winter wheat, a major crop
around the world, legumes, as rotation crops or intercrops, have been tested for the establish‐
ment of the cropping systems. According to Caporali and Campiglia, in search of strategies
for increasing sustainability in cropping systems, they have been focusing for 10 years on the
use of plant resources, such as self-reseeding winter annual legumes (Trifolium and Medicago
species) native to the Mediterranean environment [44]. Although subclover and annual medics
are well-known forage crops in cereal-lay farming systems under the Mediterranean climate
around the world, their use is practically unknown in more intensive cash-crop sequences,
such as the 2-year rotation between a winter cereal (wheat, barley) and a summer crop (rain-
fed sunflower, irrigated corn), as is common in central Italy. In this rotation, an annual legume
is used as a living mulch in winter cereals, and after its self-reseeding, as either a green manure
or living mulch for the succeeding summer crop. This alternative cropping system has proved
to have the potential to induce a significant shift toward a less energy-intensive and a more
environmentally friendly management type, while maintaining the same cash-crop sequence
of the conventional one [44].

The foundation of the system began with the screening of self-reseeding legumes species and
cultivars and ended with the implementation and performance assessment of an entire
alternative cropping system (winter cereal/summer crop rotation). The yield of winter wheat
intercropped with subclover was not significantly different from that of a pure wheat stand in
a drier crop year, while in the wetter year the grain yield of the intercropping system was
significantly higher than the pure stand. However, in both crop years, grain yields were
significantly lower that obtained using 130 kg ha–1 mineral N fertilizer, by 11% and 23%,
respectively. Additionally, a positive correlation between the amount of subclover biomass
plowed in and the vegetative and productive characteristic of sunflower was found in dry and
wet years. Subclover green manure was so effective that sunflower yield in the alternative
system was higher than that of the conventional one fertilized with 130 kg ha–1 of inorganic N.
Subclover green manure also affected biomass and the composition of the weed community
in the sunflower crop. Subclover mulch from a sod strip intercropping system with wheat was
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also effective in positively influencing the aboveground biomass production of the succeeding
crops, the effect being dependent on the amount of dry mulch left by the different subclover
species and cultivars [44].

3.4. Competition between intercrops and intercropping principles

The struggle for nature’s resources is always an issue within any crop system because plant
growth needs not only space and time, but also light, mineral nutrients, and water. The
competition can be considered to have two main aspects: aboveground competition and root
system competition. In rain-fed agriculture, under limited water conditions, a major compe‐
tition can occur between the target crop and legumes for water resource. The wheat yield under
intercropping conditions with legumes reportedly decreases with less water availability versus
a pure stand, although legume intercropping with a major crop can enhance the N content of
the soil [45]. Mc Gowan and Williams found that subclover depleted soil moisture more than
barley. At 19 weeks after sowing, maximal soil moisture was observed when barley was in a
high density and a pure stand, 7.5% at 5-15 cm and 9.9% at 15-30 cm depth, while for subclover
in a pure stand, it was 6.2% at 5-15 cm and 8% at 15-30 cm depth [46]. Taking into account
negative effects between intercrops, how to best balance between competition and companion
effects is a task for experimental research.

As Altieri and Rosset pointed out, a production system must be designed to reduce nutrient
losses by effectively containing leaching, runoff, and erosion, and improving nutrient recycling
mechanisms [40]. Diversity is a natural design, while monoculture is an anthropogenic
creation. So intercropping should be organized according to natural laws. The cultivars within
a cropping system must be suitable for the local climate and soil conditions. Under the
circumstances of intercropping, cooperation between different species is also required; at least,
competition should be eliminated as much as possible. As the main competition between two
crops is canopy competition and root system competition, the principles of a well-managed
intercropping system can be summarized as follows:

Tall and short crops are growing together to minimize struggle for sunlight and reduce air
humidity of the microclimate. Crops with deep and strong root systems intercropped with
the species with sallow root systems can reduce underground competition. The density of a
major crop should be reduced to adjust the growth of itself and leaving optimum space for
another intercrop.

Select different maturity dates to minimize competition as much as possible [47].

When crops are planted together according to these principles, competition between different
species will be less than would exist within the same species. The success of intercropping
systems at low levels of interspecific competition has also been explained in terms of more
balanced and efficient use of soil moisture due to temporal complimentarily in water require‐
ments of the two species [48]. In the case of legume intercropping, high companion effects
between the two crops are caused by biological N fixation, producing N that benefits the target
crop and offering soil cover. Simultaneously, the negative effects of legumes on the major crop
should be reduced by a well-managed system.
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4. Soil N availability and other plant nutrient availability enhancement

Nitrogen plays an important role in yield determination when relatively adequate levels of
other agricultural factors exist. Continued use of inorganic fertilizers has not only altered the
soil p H, soil structure, and texture, but has also disrupted niches for micro- and mesofauna,
which are essential for nutrient recycling [49]. Alternatively, under systems of organic farming
management, when industrial N fertilizer is not used, organic matter origin-N, after biological
degradation, is converted into mineral N forms, ammonium and nitrate, and becomes a major
factor in plant production. However, as the mineral N content in soils increases beyond the
capability of plants to take it up, it will cause N leaching and increase other kinds of N losses
into the environment. In this case, it is important to understand the N cycle and soil N balance
within an agroecosystem.

As common knowledge, the origin of all kinds of N is air N2, 79% by volume of the earth’s
atmosphere. Soil microorganisms, free-living or associated with legumes, fix atmospheric N.
This complex biological process begins with air N and ends with organic N. After organic
matter decays, NH4

+, which is ready to be used by higher plants, is released. NH4
+ can be

converted into NO3
– by nitrifying bacteria and generally most NH4

+ is modified into NO3
– in

the soil. Thus, over 90% of soil N is typically NO3
–, not NH4

+, although NH4
+ can be formed

from NO3
– through the process of denitrification in soils [50].

The denitrification process starts with NO3
– and converts it to NH4

+, N mono-oxides (NOx,
greenhouse gases), and N2. Denitrification of nitrate produces about 90% N2 and 10% NOx.
However, the natural N balance has been affected by industrial N fixation since the green
revolution. Symbiotic N amounts to about 100-175 million tons each year in the 1970s world‐
wide, with industrial fixation of 3.5 million tons, and lightning may fix 10 million tons of N, a
value that has probably not changed over time [51] . In 1989, industrially fixed N increased to
80 million tons in response to the needs for high-yielding crops [22].

By the year 2050, the world population is expected to double from a level of more than 5 billion.
It is reasonable to expect that the need for fixed N for crop production will also at least double.
If this is supplied by industrial sources, synthetic fertilizer N use will increase to about 160
million tons of N per year [51]. Consequently because of its relatively low plant uptake level,
generally around 50% or less, several major environmental reasons exist to seek alternative
fixed N fertilizers, including the fact that it affects the balance of the global N cycle, pollutes
groundwater, increases the risk of chemical spills, and increases atmospheric nitrous oxide
(N2O), a potent greenhouse gas. The global budget for N2O appears to be out of balance,
exceeding sinks by 30-40% and increasing at 0.25% each year [7]. In this case, biological N
fixation should receive more attention because about 2 tons of industry-fixed N is needed as
fertilizer for crop production to equal the effects of 1 ton of N biologically fixed in a legume
crop [51].

In cultivated land, the soil N balance is a complex system covering serial biological processes
and physical and chemical processes. It includes plant N uptake, N fixation, organic N
mineralization, nitrification and denitrification, nitrate leaching, and other losses, as N2 or
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NOx, released into the atmosphere [52]. In the case of organic farms, soil available N is
primarily from legumes as green manure and organic fertilizers. SOM reportedly supplies
most of the N and S and half of the P uptake by plants within an organic farming system
[53,54]. The plant tissues of green manure contain most of the micro or macro plant nutrients,
including N, potassium (K), P, and S. Phosphates, K, calcium (Ca), magnesium (Mg), S, and
other micro plant nutrients are accumulated by cover crops during the growing season. Hoyt
indicated the nutrients content of cover crops; see Table 3 [55]. These nutrients are maintained
in the residues of green manure plants; later, they become available to successive crops after
incorporation into the soil.

Crop N K P Mg Ca Biomass

Hair vetch 152 144 19 19 56 3520

Crimson clover 124 154 17 12 67 4573

Rye 96 117 18 9 24 6057

Austrian winter pea 156 172 21 14 49 4443

Table 3. Green manure biomass productivity and nutrient content (kg ha–1) [55].

During the composting process of green manure, some carbonic and other organic acids are
formed as by-products of microbial activities. These organic acids react with insoluble mineral
rocks and phosphate precipitates, releasing phosphates and exchangeable nutrients [29].
Gardner and Boundy found that wheat intercropped with white lupin (Lupin albus L.) has
access to a larger pool of P, Mg, and N than wheat grown in monoculture [30]. The former two
nutrients were probably mobilized by exudates of organic acids from the lupin root and then
taken up by wheat roots.

The nutrients content of different legumes can be estimated by the mathematical formulation
described by Peet [56]:

Rye: N = 0.0194 × biomass – 17.4

Hairy vetch: N = 0.0409 × biomass – 3.1

Crimson clover: N = 0.0204 × biomass + 13.8

Austrian winter pea: N = 0.0402 × biomass – 9.2

Caley peas: N = 0.0426 × biomass – 6.1

Subclover: N = 0.0280 × biomass + 2.9,

where “biomass” is the dry weight in kg ha–1, and the N content, N, is also in Kg acre–1.

For legumes, on average, pounds of K = pounds of N, and pounds of P = 10% of N.

The study of cowpea/maize intercropping shown that cowpea had used atmospheric N for
crop growth and also fixed the nutrient into the soil for subsequent crop. The soil residual
mineral N was increased by 82% compared with initial soil N. This demonstrated that
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biological N2 fixation by cowpeas replenished the available N to both crops and also for
subsequence crop [57].

5. Soil and water conservation by cover cropping

Soil conservation is an important issue in sustainable management, especially on hillsides.
Cover crops or living mulch provide important benefits in soil and water conservation. The
primary function of alley cropping on sloping lands is erosion control and soil conservation
[51,54] . Two forms of soil erosion exist: sheet and rill erosion. Sheet flow is the removal of a
relatively uniform thickness of soil and is usually caused by rain-splash, surface runoff, and
wind. In rill erosion, water flows with soil particles in small channels [58]. Soil erosion
decreases water availability, infiltration rates, water-holding capacity, nutrients, organic
matter, and the depth of the soil. Soil erosion not only causes plant nutrient loss but also SOM
loss. The latter affects field capacity and soil aggregation structure. Soil erosion has a negative
effect on the productivity of soils (Table 4) [59]. The eroded soil typically contains about three
times more nutrients than the soil left behind and 1.5–5 times more organic matter. The major
costs to a farm associated with soil erosion come from the replacement of the lost nutrients
and reduced water-holding ability, accounting for a productivity loss of 50-75% [60].

Erosion level Organic matter
(%)

Phosphorous
( kg ha–1)

Plant-available water (%)

Slight 3.0 67 7.4

Moderate 2.5 66 6.2

Severe 1.9 43 3.6

Table 4. Soil fertility effects of erosion [59].

Soil erosion is connected to water erosion. Water erosion increases the amount of runoff, so
that less water can enter the soil matrix and become available to the crop. In severely degraded
soils, water infiltration may be reduced by as much as 93%, and so water conservation is linked
to soil conservation [61]. Increased SOM content can enhance field capacity and consequently
reduce soil erosion. Another effect of reducing soil moisture losses is that the soil cover reduces
evaporation in fields. Vegetation acts as a buffer to the soil because rain-splash is an important
detaching process in soil erosion. Raindrops striking bare soil have the ability to throw soil
particles through the air over distances of several centimeters [62]. A vegetative cover also
contributes to slope stability. In Nigeria, in land with a 14% slope and under total rainfall of
1412 mm during a 3-month study period, maize alley cropping with contour hedgerows of
Lucaena leucocephala and Gliricidia sepium established at a 6-m interhedgerow spacing with
prunings used as mulch effectively contained erosion by 85% and 73%, respectively [63]. The
aboveground components of the plant, such as the leaves and stems, absorb some of the energy
of falling raindrops, running water, and wind. The belowground components, the root system,
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contribute to the strength of the soil, holding soil particles in place. Living mulch can reduce
soil and water erosion significantly, as the presence of the canopy slows down raindrops,
reducing surface runoff and enhancing water filtration. A well-developed root system holds
soil particles together, reducing soil erosion. Moreover, evapotranspiration of plants produces
a drier soil environment due to the capable of withstanding a higher intensity and longer
duration of rainfall compared with a slope that lacks vegetation [63].

6. Conclusions

Agriculture systems have evolved over long periods as a consequence of modifications of
climate, agricultural technology, and socioeconomic conditions [64]. In recent decades,
cropping systems, both in developed and developing countries, have become increasingly
simplified with markedly reduced diversity in vegetation patterns over time and across the
landscape. Concomitantly, a large increase has occurred in the use of synthetic fertilizers and
pesticides [65]. Consequently, agriculture is suffering stress from environmental issues, such
as nitrate leaching to groundwater, nitric oxide release to the air, and CO2 from the fertilizer
industry being released into the atmosphere [66]. Thus, the establishment of an adequate crop
system that is economically acceptable, environmentally sustainable, and technically practi‐
cable is the task of agronomists and farmers.

Organic agriculture is regarded as a sustainable agricultural system, taking into considera‐
tion soil fertility conservation, which covers soil physical properties, plant nutrient availabil‐
ity, and erosion control, as its key issues [67]. In organic agricultural practices, biological N
fixation has received increased attention from agricultural agronomists and producers. Al‐
though the economic value of biological N fixation by legumes varies widely, when the cost
of production of the legumes is taken into consideration, opportunities still remain to plant
legumes as a short-term rotation crop or an intercrop or living mulch [68]. Seeds of grain
legumes can be used as a fast nitrogen available fertilizer in organic production at low tem‐
peratures in early spring [26]. Intercropping management has long been practiced and has
played a crucial role in sustainable agriculture. One of the main benefits of an intercropping
system is the rational utilization of natural resources. The management of intercropping is
primarily according to natural laws within an agroecosystem. The regulation that major
crops cannot cover the entire soil surface during the whole growing season provides chan‐
ces for other plants growing as mixture crops, temporarily or spatially. Although competi‐
tion between intercrops is always observed, a well-managed polyculture system can provide
a higher total production than all of the crops planted as pure stands. Crop diversity, in both
time and space, appears to be a critical element of sustainable agroecosystems that require
few external inputs. Green manure, a major measure for the self-sufficient maintenance of
soil fertility, offers organic matter to soil and fixing N2 into organic form in the case of le‐
gumes.
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