1,860 research outputs found

    Enhanced magnetic anisotropy in cobalt-carbide nanoparticles

    Get PDF
    An outstanding problem in nano-magnetism is to stabilize the magnetic order in nanoparticles at room temperatures. For ordinary ferromagnetic materials, reduction in size leads to a decrease in the magnetic anisotropy resulting in superparamagnetic relaxations at nanoscopic sizes. In this work, we demonstrate that using wet chemical synthesis, it is possible to stabilize cobalt carbide nanoparticles which have blocking temperatures exceeding 570 K even for particles with magnetic domains of 8 nm. First principles theoretical investigations show that the observed behavior is rooted in the giant magnetocrystalline anisotropies due to controlled mixing between C p- and Co d-states

    DSTYK Promotes Metastasis and Chemoresistance via EMT in Colorectal Cancer

    Get PDF
    Objective: Tumor metastasis and resistance to chemotherapy are two critical factors that contribute to the high death rate of colorectal cancer (CRC) patients. Metastasis is facilitated by the epithelial-mesenchymal transition (EMT) of tumor cells, which has emerged not only as a fundamental process during metastasis, but is also a key process leading to chemoresistance of cancer cells. However, the underlying mechanisms of EMT in CRC cell remain unknown. Here, we aim to assess the role of dual serine/threonine and tyrosine protein kinase (DSTYK) in CRC metastasis and chemoresistance. Methods: To study the role of DSTYK in TGF-β-induced EMT, we employed techniques including Crispr/Cas9 knockout (KO) to generate DSTYK KO cell lines, RT-PCR to detect the mRNA expression, immunofluorescence analyses, and western blots to detect protein levels of DSTYK in the following 4 cell lines: control LS411N-TβRII and LS411N-TβRII/DSTYK KO, control LS513 and LS513/DSTYK KO cells, treated with/without TGF-β. The effects of DSTYK on apoptosis were investigated by MTT assays, flow cytometry assays, and TUNEL assays. The expression of DSTYK in CRC patients and its correlation with EMT markers were determined by bioinformatics analysis. For in vivo analysis, both xenograft and orthotopic tumor mouse models were employed to investigate the function of DSTYK in chemoresistance and metastasis of tumors. Results: In this study, we demonstrate that the novel kinase DSTYK promotes both TGF-β-induced EMT and the subsequent chemoresistance in CRC cells. DSTYK KO significantly attenuates TGF-β–induced EMT and chemoresistance in CRC cells. According to the Gene Expression Omnibus (GEO) database, the expression of DSTYK is not only positively correlated to the expression of TGF-β, but proportional to the death rate of CRC patients as well. Evidently, the expression of DSTYK in the metastatic colorectal cancer samples from patients was significantly higher than that of primary colorectal cancer samples. Further, we demonstrate in mouse models that chemotherapeutic drug treatment suppresses the growth of DSTYK KO tumors more effectively than control tumors. Conclusion: Our findings identify DSTYK as a novel protein kinase in regulating TGF-β–mediated EMT and chemoresistance in CRC cells, which defines DSTYK as a potential therapeutic target for CRC therapy

    Magnetic properties of Co2C and Co3C nanoparticles and their assemblies

    Get PDF
    Nano-composite material consisting of Co2C and Co3C nanoparticles has recently been shown to exhibit unusually large coercivities and energy products. Experimental studies that can delineate the properties of individual phases have been undertaken and provide information on how the coercivities and the energy product change with the size and composition of the nanoparticles. The studies indicate that while both phases are magnetic, the Co3C has higher magnetization and coercivity compared to Co2C. Through first principles electronic structure studies using a GGA+U functional, we provide insight on the role of C intercalation on enhancing the magnetic anisotropy of the individual phases

    Comparison of the inhibition of an OCT3 transporter inhibitor, Nilotinib, on Doxorubicin’s effects on cardiac and cancer cell lines

    Get PDF
    Introduction Doxorubicin (DOX)-induced cardiotoxicity remains a significant barrier limiting its clinical application due to a lack of effective resolution. Targeting how DOX enters cardiac and cancer cells is a promising new strategy. Research suggests that an OCT3 transporter significantly contributes to DOX entry into the heart tissue. By contrast, it expresses much lower on breast cancer cell lines. Moreover, Nilotinib (NIB) can suppress OCT3 transporter function by 80%. Therefore, exploring the impact of NIB on the DOX’s effects on cardiac and cancer cell lines by altering DOX intracellular accumulation is intriguing. Objective First, we would establish a dose-response curve of DOX and NIB alone to assess their individual effects on cell viability. Secondly, we would record the impact of NIB on DOX entry within cardiac myoblasts (H9C2) and breast cancer cells (MCF7) through OCT3 transporter antagonism to assess if NIB can exert cardioprotective effects while maintaining DOX’s anticancer effect. Methods H9C2 myoblast and MCF7 breast cancer cells were seeded in 96-well black plates. Cells were treated with only DOX or NIB to establish a dose-response curve. Moreover, NIB was combined with DOX as a cotreatment or pretreatment regimen to evaluate the impacts of NIB on DOX’s effect. Titrated combinations of NIB (10 nM, 50 nM, 100 nM, 500 nM, 1 µM, 2 µM, 5 µM) and DOX (10 µM and 40µM) were used. Bioassays were conducted after cells were treated for 24 hours. Intracellular DOX fluorescence intensity was measured at 488/590 nm by fluoroskan. Subsequently, cell viability was detected by measuring absorbance at 450 nm after adding a cell counting reagent. The data were expressed as a ratio relative to untreated or the DOX control. Results DOX dose-dependently reduced viability of H9c2 and MCF7 cells. H9c2 cell showed significantly lower cell viability at 1 µM (0.86±0.04, n=10, p\u3c0.05) and 40 µM (0.40±0.02, n=10, p\u3c0.05) when compared to those of MCF7 cells (1.07±0.05 and 0.68±0.08 for 1 µM and 40 µM, respectively, n=7). By contrast, NIB (10 nM-2 µM) only slightly increased cell viability to 1.13±0.05 (n=11) in H9c2 cells and to 1.16±0.13 (n=7) in MCF7 cells, respectively, when compared to untreated control. The highest tested dose of NIB (5 µM) showed a similar reduction of cell viability to 0.83±0.07 in H9c2 cells and to 0.81±0.10 in MCF7 cells. Furthermore, NIB cotreatment mitigated DOX-induced damages in H9c2 by increasing cell viability to 1.28±0.07 (n=5) and 1.26±0.11 (n=7) when compared to the DOX controls (10 µM and 40µM), respectively. Interestingly, NIB cotreatment enhanced DOX’s anti-cancer effects in by decreasing MCF7 cell viability to 0.66±0.10 (n=7) and 0.70±0.09 (n=6) when compared to the DOX controls (10 µM and 40µM), respectively. The intracellular DOX fluorescence data and NIB pretreatment results are still being gathered. Conclusion DOX, not NIB, dose-dependently induced H9c2 and MCF7 cell death. Moreover, DOX-induced damage was more potent in H9c2 cells than in MCF7 cells. NIB cotreatment mildly protected H9c2 cells against DOX, whereas it increased DOX’s anti-cancer effects in MCF7 cells

    Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.

    Get PDF
    Drug resistance presents a challenge to the treatment of cancer patients. Many studies have focused on cell-autonomous mechanisms of drug resistance. By contrast, we proposed that the tumour micro-environment confers innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anticancer drugs. We found that stroma-mediated resistance is common, particularly to targeted agents. We characterized further the stroma-mediated resistance of BRAF-mutant melanoma to RAF inhibitors because most patients with this type of cancer show some degree of innate resistance. Proteomic analysis showed that stromal cell secretion of hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI(3)K)-AKT signalling pathways, and immediate resistance to RAF inhibition. Immunohistochemistry experiments confirmed stromal cell expression of HGF in patients with BRAF-mutant melanoma and showed a significant correlation between HGF expression by stromal cells and innate resistance to RAF inhibitor treatment. Dual inhibition of RAF and either HGF or MET resulted in reversal of drug resistance, suggesting RAF plus HGF or MET inhibitory combination therapy as a potential therapeutic strategy for BRAF-mutant melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal and glioblastoma cell lines. More generally, this study indicates that the systematic dissection of interactions between tumours and their micro-environment can uncover important mechanisms underlying drug resistance

    Chiral Assemblies of Pinwheel Superlattices on Substrates

    Full text link
    The unique topology and physics of chiral superlattices make their self-assembly from nanoparticles a holy grail for (meta)materials. Here we show that tetrahedral gold nanoparticles can spontaneously transform from a perovskite-like low-density phase with corner-to-corner connections into pinwheel assemblies with corner-to-edge connections and denser packing. While the corner-sharing assemblies are achiral, pinwheel superlattices become strongly mirror-asymmetric on solid substrates as demonstrated by chirality measures. Liquid-phase transmission electron microscopy and computational models show that van der Waals and electrostatic interactions between nanoparticles control thermodynamic equilibrium. Variable corner-to-edge connections among tetrahedra enable fine-tuning of chirality. The domains of the bilayer superlattices display strong chiroptical activity identified by photon-induced near-field electron microscopy and finite-difference time-domain simulations. The simplicity and versatility of the substrate-supported chiral superlattices facilitate manufacturing of metastructured coatings with unusual optical, mechanical and electronic characteristics

    The Sloan Digital Sky Survey Reverberation Mapping Project: Key Results

    Get PDF
    We present the final data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping (RM) project, a precursor to the SDSS-V Black Hole Mapper RM program. This data set includes 11 yr photometric and 7 yr spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1 < z < 4.5 and a luminosity range of L bol = 1044−47.5 erg s−1, along with spectral and variability measurements. We report 23, 81, 125, and 110 RM lags (relative to optical continuum variability) for broad Hα, Hβ, Mg ii, and C iv using the SDSS-RM sample, spanning much of the luminosity and redshift ranges of the sample. Using 30 low-redshift RM active galactic nuclei with dynamical-modeling black hole masses, we derive a new estimate of the average virial factor of logf=0.62±0.07 for the line dispersion measured from the rms spectrum. The intrinsic scatter of individual virial factors is 0.31 ± 0.07 dex, indicating a factor of 2 systematic uncertainty in RM black hole masses. Our lag measurements reveal significant R–L relations for Hβ and Mg ii at high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of the R–L relation for C iv given the limited dynamic range in luminosity, we found substantially larger scatter in C iv lags at fixed L 1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hβ, Mg ii, and C iv, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hβ and Mg ii recipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the C iv recipe. The intrinsic scatter of SE masses around RM masses is ∼0.45 dex for Hβ and Mg ii, increasing to ∼0.58 dex for C iv
    • …
    corecore