166 research outputs found

    An On-line Calibration Method for TSEP-based Junction Temperature Estimation

    Get PDF

    Rapid Determination of Saponins in the Honey-Fried Processing of Rhizoma Cimicifugae by Near Infrared Diffuse Reflectance Spectroscopy.

    Get PDF
    ObjectiveA model of Near Infrared Diffuse Reflectance Spectroscopy (NIR-DRS) was established for the first time to determine the content of Shengmaxinside I in the honey-fried processing of Rhizoma Cimicifugae.MethodsShengmaxinside I content was determined by high-performance liquid chromatography (HPLC), and the data of the honey-fried processing of Rhizoma Cimicifugae samples from different batches of different origins by NIR-DRS were collected by TQ Analyst 8.0. Partial Least Squares (PLS) analysis was used to establish a near-infrared quantitative model.ResultsThe determination coefficient R² was 0.9878. The Cross-Validation Root Mean Square Error (RMSECV) was 0.0193%, validating the model with a validation set. The Root Mean Square Error of Prediction (RMSEP) was 0.1064%. The ratio of the standard deviation for the validation samples to the standard error of prediction (RPD) was 5.5130.ConclusionThis method is convenient and efficient, and the experimentally established model has good prediction ability, and can be used for the rapid determination of Shengmaxinside I content in the honey-fried processing of Rhizoma Cimicifugae

    DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems

    Get PDF
    DC-connected parallel inverter systems are gaining popularity in industrial applications. However, such parallel systems generate excess current ripple (harmonics) at the DC-link due to harmonic interactions between the inverters in addition to the harmonics from the PWM switching. These DC-link harmonics cause the failure of fragile components such as DC-link capacitors. This paper proposes an interleaving scheme to minimize the current harmonics induced in the DC-link of such a system. First, the optimal phase-shift angle for the carrier signal is investigated using the analytical equations, which provides maximum capacitor current ripple cancellation (i.e., at the main switching frequency harmonic component). These optimally phase-shifted switching cycles lead to variations of the output current ripples, which, when summed together at the DC-link, result in the cancellations of the DC-link current ripples. The results show that when the carrier waves of the two inverters are phase-shifted by a 90° angle, the maximum high-frequency harmonic ripple cancellation occurs, which reduces the overall root-mean-square (RMS) value of the DC-capacitor current by almost 50%. The outcome of this proposed solution is a cost-effective DC-harmonics mitigating strategy for the industrial designers to practically configure multi-inverter systems, even when most of the drives are not operating at rated power levels. The experimental and simulation results presented in this paper verify the effectiveness of the proposed carrier-based phase-shifting scheme for two different configurations of common DC connected multi-converter systems

    Lifetime Prediction of DC-link Capacitors in Multiple Drives System Based on Simplified Analytical Modeling

    Get PDF

    Coordinated Dynamic Bidding in Repeated Second-Price Auctions with Budgets

    Full text link
    In online ad markets, a rising number of advertisers are employing bidding agencies to participate in ad auctions. These agencies are specialized in designing online algorithms and bidding on behalf of their clients. Typically, an agency usually has information on multiple advertisers, so she can potentially coordinate bids to help her clients achieve higher utilities than those under independent bidding. In this paper, we study coordinated online bidding algorithms in repeated second-price auctions with budgets. We propose algorithms that guarantee every client a higher utility than the best she can get under independent bidding. We show that these algorithms achieve maximal coalition welfare and discuss bidders' incentives to misreport their budgets, in symmetric cases. Our proofs combine the techniques of online learning and equilibrium analysis, overcoming the difficulty of competing with a multi-dimensional benchmark. The performance of our algorithms is further evaluated by experiments on both synthetic and real data. To the best of our knowledge, we are the first to consider bidder coordination in online repeated auctions with constraints.Comment: 43 pages, 12 figure

    MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection

    Full text link
    In the field of monocular 3D detection, it is common practice to utilize scene geometric clues to enhance the detector's performance. However, many existing works adopt these clues explicitly such as estimating a depth map and back-projecting it into 3D space. This explicit methodology induces sparsity in 3D representations due to the increased dimensionality from 2D to 3D, and leads to substantial information loss, especially for distant and occluded objects. To alleviate this issue, we propose MonoNeRD, a novel detection framework that can infer dense 3D geometry and occupancy. Specifically, we model scenes with Signed Distance Functions (SDF), facilitating the production of dense 3D representations. We treat these representations as Neural Radiance Fields (NeRF) and then employ volume rendering to recover RGB images and depth maps. To the best of our knowledge, this work is the first to introduce volume rendering for M3D, and demonstrates the potential of implicit reconstruction for image-based 3D perception. Extensive experiments conducted on the KITTI-3D benchmark and Waymo Open Dataset demonstrate the effectiveness of MonoNeRD. Codes are available at https://github.com/cskkxjk/MonoNeRD.Comment: Accepted by ICCV 202

    Ultrafast Switching from the Charge Density Wave Phase to a Metastable Metallic State in 1T-TiSe2_2

    Full text link
    The ultrafast electronic structures of the charge density wave material 1T-TiSe2_2 were investigated by high-resolution time- and angle-resolved photoemission spectroscopy. We found that the quasiparticle populations drove ultrafast electronic phase transitions in 1T-TiSe2_2 within 100 fs after photoexcitation, and a metastable metallic state, which was significantly different from the equilibrium normal phase, was evidenced far below the charge density wave transition temperature. Detailed time- and pump-fluence-dependent experiments revealed that the photoinduced metastable metallic state was a result of the halted motion of the atoms through the coherent electron-phonon coupling process, and the lifetime of this state was prolonged to picoseconds with the highest pump fluence used in this study. Ultrafast electronic dynamics were well captured by the time-dependent Ginzburg-Landau model. Our work demonstrates a mechanism for realizing novel electronic states by photoinducing coherent motion of atoms in the lattice.Comment: 13 Pages, 10 figure
    • …
    corecore