31,147 research outputs found

    Properties of solutions of stochastic differential equations driven by the G-Brownian motion

    Full text link
    In this paper, we study the differentiability of solutions of stochastic differential equations driven by the GG-Brownian motion with respect to the initial data and the parameter. In addition, the stability of solutions of stochastic differential equations driven by the GG-Brownian motion is obtained

    Galilean invariance of lattice Boltzmann models

    Full text link
    It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments

    Crystal structure and SUMO binding of Slx1-Slx4 complex

    Get PDF
    published_or_final_versio

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73MM_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table
    corecore