10 research outputs found

    Picturing Electron Capture to the Continuum in the Transfer Ionization of Intermediate-Energy He²⁺ Collisions with Argon

    Get PDF
    Electron emission occurring in transfer ionization for He2+ collisions with argon has been investigated using cold target recoil ion momentum spectroscopy. The double differential cross sections for electron capture to the continuum of the projectile (cusp-shaped electrons) are presented for collision energies from 17.5 to 75 keV/u. For an energy of 30 keV/u, we find a maximum in the experimental ratio of the cusp-shaped electron yield to the total electron yield. This result is explained in terms of the velocity matching between the projectile ion and the electron initially bound to the target. One of the important issues for double electron transitions is the role of electron-electron correlation. If this correlation is weak, then the transfer-ionization process can be viewed as two separate sequential processes. If this correlation is strong, then the transfer-ionization process would happen simultaneously and not sequentially. Our experimental and theoretical results indicate that correlation is weak and that the first step is target ionization followed by charge capture

    Robust Control Using Sliding Mode for a Class of Under-Actuated Systems With Mismatched Uncertainties

    No full text
    Abstract-Based on the methodology of sliding mode, this paper presents a robust controller for a class of under-actuated systems with mismatched uncertainties. Such a system consists of a nominal system and the mismatched uncertainties. The structural characteristic of the nominal system is that it is made up of several subsystems. Based on this characteristic, the hierarchical structure of the sliding mode surfaces is designed for the nominal system as follows. Firstly, the nominal system is divided into several subsystems and the sliding mode surface of every subsystem is defined. Secondly, the sliding mode surface of one subsystem is selected as the first layer sliding mode surface. The first layer sliding mode surface is then to construct the second layer sliding mode surface with the sliding mode surface of another subsystem. This process continues till the sliding mode surfaces of all the subsystems are included. For dealing with the mismatched uncertainties, a lumped sliding mode compensator is designed at the last layer sliding mode surface. The asymptotic stability of every layer sliding mode surface and the sliding mode surface of each subsystem is proven theoretically by Barbalat's lemma. Simulation results show the validity of this robust control method through stabilization control of a double inverted pendulums system with mismatched uncertainties

    Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China

    No full text
    Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20°) were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1). The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w), stream power was the best predictor of sediment yield rate (R2 = 0.884). Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897). The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil

    Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy

    No full text
    Grain size is one of the most important physical parameters for randomly packed granular (RPG) materials. Its estimation, especially in situ, plays a key role in many natural and industrial processes. Here, the application of laser-induced breakdown spectroscopy (LIBS) was investigated experimentally to estimate the grain size in RPG materials. The experiment was performed by taking sieved copper microspheres with discrete median diameters ranging from 53 to 357 μm as examples and by measuring the plasma emissions induced by 1064 nm laser pulses with a duration of 7 ns in an air environment. It was found that the plasma emission measurements were successful in estimating the grain median diameter via monitoring the variations in plasma temperature (electron density) at the range of median diameter below (above) a critical value. In addition, it was demonstrated that, when plasma temperature serves as an indicator of grain size, the intensity ratio between two spectral lines from different upper energy levels of the same emitting species can be used as an alternative indicator with higher sensitivity. The results show the potential of using LIBS for in situ estimation of grain size in RPG materials for the first time

    Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy

    No full text
    Grain size is one of the most important physical parameters for randomly packed granular (RPG) materials. Its estimation, especially in situ, plays a key role in many natural and industrial processes. Here, the application of laser-induced breakdown spectroscopy (LIBS) was investigated experimentally to estimate the grain size in RPG materials. The experiment was performed by taking sieved copper microspheres with discrete median diameters ranging from 53 to 357 μm as examples and by measuring the plasma emissions induced by 1064 nm laser pulses with a duration of 7 ns in an air environment. It was found that the plasma emission measurements were successful in estimating the grain median diameter via monitoring the variations in plasma temperature (electron density) at the range of median diameter below (above) a critical value. In addition, it was demonstrated that, when plasma temperature serves as an indicator of grain size, the intensity ratio between two spectral lines from different upper energy levels of the same emitting species can be used as an alternative indicator with higher sensitivity. The results show the potential of using LIBS for in situ estimation of grain size in RPG materials for the first time
    corecore