3,142 research outputs found

    Prognostic Outcomes and Risk Factors for Patients with Renal Cell Carcinoma and Venous Tumor Thrombus after Radical Nephrectomy and Thrombectomy: The Prognostic Significance of Venous Tumor Thrombus Level.

    Get PDF
    IntroductionTo evaluate the prognostic outcomes and risk factors for renal cell carcinoma (RCC) patients with venous tumor thrombus in China.Materials and methodsWe reviewed the clinical information of 169 patients who underwent radical nephrectomy and thrombectomy. Overall and cancer-specific survival rates were analyzed. Univariate and multivariate analyses were used to investigate the potential prognostic factors.ResultsThe median survival time was 63 months. The five-year overall survival and cancer-specific survival rate were 53.6% and 54.4% for all patients. For all patients, significant survival difference was only observed between early (below hepatic vein) and advanced (above hepatic vein) tumor thrombus. However, significant differences existed between both RV/IVC and early/advanced tumor thrombus groups in N0M0 patients. Multivariate analysis demonstrated that higher tumor thrombus level (p = 0.016, RR = 1.58), N (p = 0.013, RR = 2.60), and M (p < 0.001, RR = 4.14) stages and adrenal gland invasion (p = 0.001, RR = 4.91) were the most significant negative prognostic predictors.ConclusionsIn this study, we reported most cases of RCC patients with venous extension in China. We proved that patients with RCC and venous tumor thrombus may have relative promising long-term survival rate, especially those with early tumor thrombus

    Duality between the deconfined quantum-critical point and the bosonic topological transition

    Get PDF
    Recently significant progress has been made in (2+1)(2+1)-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities, i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly-correlated quantum-matter systems: the one relating the easy-plane noncompact CP1^1 model (NCCP1^1) and noncompact quantum electrodynamics (QED) with two flavors (N=2N = 2) of massless two-component Dirac fermions. The easy-plane NCCP1^1 model is the field theory of the putative deconfined quantum-critical point separating a planar (XY) antiferromagnet and a dimerized (valence-bond solid) ground state, while N=2N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work we present strong numerical support for the proposed duality. We realize the N=2N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC) simulations. Using stochastic series expansion QMC, we study a planar version of the S=1/2S=1/2 JJ-QQ spin Hamiltonian (a quantum XY-model with additional multi-spin couplings) and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships.Comment: 14 pages, 9 figure

    Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting

    Full text link
    Due to the nonstationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods address distribution drift via adapting to the latest arrived data or self-correcting per the meta knowledge derived from future data. Despite their great success in MTS forecasting, these methods hardly capture the intrinsic distribution changes, especially from a distributional perspective. Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time between historical observations and future data in MTSs and infer the dependencies as a temporal conditional distribution to leverage latent variables. Specifically, a novel temporal Hawkes attention mechanism represents temporal factors subsequently fed into feed-forward networks to estimate the prior Gaussian distribution of latent variables. The representation of temporal factors further dynamically adjusts the structures of Transformer-based encoder and decoder to distribution changes by leveraging a gated attention mechanism. Moreover, we introduce conditional continuous normalization flow to transform the prior Gaussian to a complex and form-free distribution to facilitate flexible inference of the temporal conditional distribution. Extensive experiments conducted on six real-world MTS datasets demonstrate the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines. We further illustrate the TCVAE applicability through multifaceted case studies and visualization in real-world scenarios.Comment: 13 pages, 6 figures, submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS

    Learning Informative Representation for Fairness-aware Multivariate Time-series Forecasting: A Group-based Perspective

    Full text link
    Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models since such models may attend/bias to certain (advantaged) variables. Addressing this unfairness problem is important for equally attending to all variables and avoiding vulnerable model biases/risks. However, fair MTS forecasting is challenging and has been less studied in the literature. To bridge such significant gap, we formulate the fairness modeling problem as learning informative representations attending to both advantaged and disadvantaged variables. Accordingly, we propose a novel framework, named FairFor, for fairness-aware MTS forecasting. FairFor is based on adversarial learning to generate both group-independent and group-relevant representations for the downstream forecasting. The framework first leverages a spectral relaxation of the K-means objective to infer variable correlations and thus to group variables. Then, it utilizes a filtering&fusion component to filter the group-relevant information and generate group-independent representations via orthogonality regularization. The group-independent and group-relevant representations form highly informative representations, facilitating to sharing knowledge from advantaged variables to disadvantaged variables to guarantee fairness. Extensive experiments on four public datasets demonstrate the effectiveness of our proposed FairFor for fair forecasting and significant performance improvement.Comment: 13 pages, 5 figures, accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE
    corecore