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Recently significant progress has been made in (2+1)-dimensional conformal field theories without
supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden
dualities, i.e., seemingly different field theories may actually be identical in the infrared limit. Among
all the proposed dualities, one has attracted particular interest in the field of strongly-correlated
quantum-matter systems: the one relating the easy-plane noncompact CP1 model (NCCP1) and
noncompact quantum electrodynamics (QED) with two flavors (N = 2) of massless two-component
Dirac fermions. The easy-plane NCCP1 model is the field theory of the putative deconfined quantum-
critical point separating a planar (XY) antiferromagnet and a dimerized (valence-bond solid) ground
state, while N = 2 noncompact QED is the theory for the transition between a bosonic symmetry-
protected topological phase and a trivial Mott insulator. In this work we present strong numerical
support for the proposed duality. We realize the N = 2 noncompact QED at a critical point
of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant
quantum Monte Carlo (QMC) simulations. Using stochastic series expansion QMC, we study a
planar version of the S = 1/2 J-Q spin Hamiltonian (a quantum XY-model with additional multi-
spin couplings) and show that it hosts a continuous transition between the XY magnet and the
valence-bond solid. The duality between the two systems, following from a mapping of their phase
diagrams extending from their respective critical points, is supported by the good agreement between
the critical exponents according to the proposed duality relationships.

I. INTRODUCTION

A duality in physics is an equivalence of different math-
ematical descriptions of a system or a state of matter, es-
tablished through a mapping by change of variables. The
simplest example is the particle-wave duality in quantum
mechanics, where the duality transformation is a change
of basis by Fourier transformation, and the chosen basis
dictates the variables used to describe the system. In
classical statistical mechanics, the most famous duality
is the Kramers-Wannier duality of the two-dimensional
(2D) Ising model [1]. Here the low- and high-temperature
expansions of the partition function can be related to
each other by identifying a one-to-one correspondence
between the terms in the two different series, thus estab-
lishing an exact mapping between the ordered and disor-
dered phases and the corresponding collective variables.
In this case the critical point is also a self-duality point.
In the 3D Ising model, one can instead find a different
model whose high-temperature expansion stands in a di-
rect one-to-one correspondence with the low-temperature
expansion of the the Ising gauge model [2, 3]. Many other
examples of dualities have been established, e.g., the well-
known equivalence between the 3D O(2) Wilson-Fisher
fixed point and the 3D Higgs transition with a noncom-
pact U(1) gauge field [4–6] [7].

In analogy with the Ising examples mentioned above,
it is some times possible to transform a quantum field
theory at strong coupling into an equivalent dual the-
ory at weak coupling. The untractable original prob-
lem can then be solved by means of perturbative meth-
ods applied to the dual theory. Such strong-weak du-
ality (and the more general “S-duality” form) was es-
tablished in certain supersymmetric Yang-Mills theo-
ries [8–11] and Abelian gauge theory without super-
symmetry [12–14]. In 1D quantum systems (i.e., in 1 + 1
space-time dimensions) a well known fermion-boson du-
ality is achieved by bosonization of an interacting fermion
system through a non-local transformation [15–19]. Usu-
ally, in the bosonized formalism interactions can be more
easily treated than in the original fermion model.

In cases where no formal mapping is known, two La-
grangians that look different in the ultraviolet may still
flow (under the renormalization group) to the same the-
ory in the infrared, i.e., these seemingly different field
theories actually represent exactly the same low-energy
physics. Such a duality goes a step beyond the more
familiar concept of universality, by which systems (mod-
els or real materials) with the same dimensionality and
global symmetries exhibit identical scaling properties at
their classical or quantum critical points. Such systems
share the same effective critical low-energy field-theory
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description. For example, the critical points of the Bose-
Hubbard model and the quantum rotor model are in the
same universality class. A duality transformation usually
changes the description of the system into a form based
on nonlocal objects or defects of the original description.
On a practical level, the existence of a dual field theory
means that there is a non-trivial choice of which descrip-
tion to use, and one of them (and not necessarily the
originally most obvious one) may pose a more tractable
setup for calculations.

Even if no strong-weak transformation exists (or is
known), a difficult or non-tractable strong-coupling prob-
lem can some times be shown to be dual to a different
strong-coupling problem that is tractable with some spe-
cific computational technique. In particular, the dual
problem may be more easily solvable using powerful nu-
merical (lattice) methods. In this paper we will ex-
plore such a recently proposed duality between two dif-
ferent (2 + 1)D Lagrangians that respectively involve
fermionic and bosonic matter fields coupled with a gauge
field [20, 21]. Both theories are of great current interest
in the context of strongly correlated electrons in two di-
mensions. Our aim here is to identify a duality between
the systems by establishing corresponding lattice models
realizing the two low-energy theories.

We follow the recent proposal that (2 + 1)D quantum
electrodynamics (QED) with noncompact gauge field and
two flavors of Dirac fermions is dual to the critical point
of the easy-plane NCCP1 model (the bosonic QED with
two flavors of complex bosons) [20, 21]. On the lattice,
we realize the former with an interacting fermion model
with spin-orbit coupling on the bilayer honeycomb lat-
tice (BH), which hosts a quantum phase transition be-
tween a (bosonic) symmetry-protected topological state
and a trivial Mott insulator [22–24]. It was proposed
that this transition is described by N = 2 noncompact
QED [25, 26]. To realize the low-energy physics of the
NCCP1 theory, in this paper we introduce a planar vari-
ant of the spin S = 1/2 J-Q Hamiltonian (a Heisenberg
model with additional multi-spin couplings [27]), dubbed
the easy-plane J-Q (EPJQ) model, and show that it hosts
a deconfined quantum-critical point [28–30] separating
antiferromagnetic (AFM) and dimerized (valence-bond-
solid, VBS) ground states (similar to the case of the J-Q
model with full spin SU(2) symmetry [31], but with dif-
ferent universality due to the lowered symmetry). Our
numerical (quantum Monte Carlo, QMC) results estab-
lishes the critical-point universality and duality between
the phase diagrams of the two models. With the EPJQ
model being much easier to study on large scales with
QMC simulations than the fermionic model, the duality
that we establish here allows for detailed studies of the
topological transition of the latter, through the analogue
of the deconfined quantum-critical point. The phase di-
agrams and dualities studied are summarized in Fig. 1.

The rest of the paper is organized as follows: In Sec. II
we present the details of the two field theories and their
putative duality, and in Sec. III we define the lattice mod-

els and the proposed mappings relating their phase dia-
grams to each other. In Sec. IV and Sec. V we present the
numerical results for the EPJQ and BH models, respec-
tively. We conclude with a brief summary and discussion
of the results in Sec. VI. In Appendix A we present fur-
ther technical details on the analysis of the critical expo-
nents, and in Appendix B we compare results for differ-
ent variants of the EPJQ model (with different degrees
of spin-anisotropy).

II. CONTINUUM FIELD THEORIES

The bosonic particle-vortex duality mentioned in the
introduction was recently generalized to a model with
fermionic matter [32–40], in the form of a (2 + 1)D QED
Lagrangian with a single flavor of a two component Dirac
fermion and noncompact gauge field, i.e., N = 1 QED.
This theory is dual to that of a noninteracting Dirac
fermion in the infrared limit [41]. Based on this N = 1
duality, Ref. [42] showed that (2 + 1)D QED with non-
compact gauge field and N = 2 flavors of Dirac fermions
is self-dual. This is also a fermionic version of the self-
duality of the easy-plane NCCP1 model (which can be
regarded as N = 2 bosonic QED) [28, 29, 43]. The self-
duality of the N = 2 QED Lagrangian was also verified
with different derivations [40, 44, 45]. Unlike the case
of N = 1, there is no equivalent noninteracting descrip-
tion of (2 + 1)D QED with N = 2, however. Because
of its self-duality, N = 2 QED hosts an (emergent) O(4)
symmetry in the infrared, which factorizes into the two
independent SU(2) flavor symmetries on the two sides of
the self-dual point.

More recently, based on the previous fermion-boson
duality [37], it was argued that N = 2 QED is also dual to
the easy-plane NCCP1 model at the critical point [20, 21].
These two field theories can be written as

LQED = ψ̄γ · (∂ − ia)ψ +mψ̄ψ +Mψ̄σ3ψ, (1a)

LCP1 = |(∂ − ib)z|2 + g|z|4 + rz†z + hz†σ3z, (1b)

where ψ and z are two-component Dirac fermion and
complex boson fields coupled to non-compact U(1) gauge
fields, a and b, respectively. The duality maps the vari-
ables (m,M) to (h, r). Moreover, both theories in Eq. (1)
are individually self-dual. The putative duality between
the two theories implies that the easy-plane NCCP1

model should also have an emergent O(4) symmetry at
its critical point, which is not immediately obvious in
Eq. (1b). The corresponding O(4) order parameter is

N =
(
z†σxz, z†σyz,Re[Mb], Im[Mb]

)
, (2)

where Mb is the monopole operator (gauge flux annihi-
lation operator) of the gauge field b.

The proposed duality between the two theories in
Eq. (1) leads to very strong predictions for relationships
between their properties. For example, the scaling di-
mension of m in N = 2 QED should be precisely the same
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FIG. 1: Schematic phase diagrams of (a) the bilayer honey-
comb (BH) model, and (b) the easy-plane J-Q3 model. In all
models, four phases joint at the deconfined quantum critical
point. Phases of the same color can be mapped to each other
among the models.

Kane-Mele model, which drives the fermion into a quan-
tum spin Hall state with spin Hall conductance σsH = ±2
(depending on the sign of the spin-orbit coupling λ).
With weak interaction V , the bilayer quantum spin Hall
state crosses over to a bosonic symmetry protected topo-
logical (BSPT) state. However strong interlayer pair-
hopping interaction V evantually favors a direct product
state of anti-bonding Cooper pairs. In the strong inter-
action limit (V → ∞), the ground state of the BH model

reads |GS⟩ =
∏

i(c
†
i1↑c

†
i1↓ − c†

i2↑c
†
i2↓)|0c⟩, with |0c⟩ being

the fermion vacuum state. This state has no quantum
spin Hall conductance, i.e.σsH = 0. It could be called a
trivial Mott state. As the interaction V varies from 0 to
∞, the quantum spin Hall conductance jumps from ±2 to
0 (which can not happen smoothly), so the BSPT phase
and the trivial Mott phase must be separated by quan-
tum phase transitions. It was found numerically that
there is indeed a direct continuous transition at V = Vc.

The low-energy bosonic fluctuations around the critical
point form an O(4) vector N = (Re Σ, ImΣ, Re∆, Im∆),

Σi = (−)i(c†
i1↑ci2↓ + c†

i2↑ci1↓),

∆i = (ci1↓ci1↑ − ci2↓ci2↑),
(3)

where Σ carries spin and ∆ carries charge. The BH model
Eq. (??) respects the global SO(4) symmetry that rotates
the O(4) vector. However if the symmetry is lowered to
U(1)spin × U(1)charge, then the BSPT-Mott transition is
unstable towards spontaneous symmetry breaking of the
remaining symmetries. For example, the SO(4) symme-
try could be explicitly lowered to U(1)spin ×U(1)charge by
the Hubbard-like interaction

U

2

∑

i

(∆†
i∆i +∆i∆

†
i −Σ†

iΣi −ΣiΣ
†
i ) = U

∑

i

ρi↑ρi↓, (4)

where ρiσ = (c†
i1σci1σ + c†

i2σci2σ − 1) is the density of the
σ =↑, ↓ fermions. The repulsive U > 0 (or attractive U <
0) interaction drives the spin ⟨Σ⟩ ̸= 0 (or charge ⟨∆⟩ ̸= 0)
condensation, leading to the spin density wave (SDW) (or
superconducting (SC)) phase that breaks the U(1)spin (or
U(1)charge) symmetry spontaneously, as illustrated in the
schematic phase diagram Fig. ??(b).

The easy-plane J-Q3 model (abbreviated as the JQ
model hereinafter) is a spin model defined on a square
lattice. Starting from the spin-1/2 operator Si on each
site i, we define the dimmer operator Dij = Si ·Sj across

TABLE I: Dictionary of the operator/parameter duality be-
tween the BH and the JQ models.

field theory lattice model
QED ↔ NCCP1 BH model ↔ EPJQ model

m h V − Vc hz

M r U Q − Qc

N (Σ, ∆) (D+, S+)

each bond ij, then the model Hamiltonian reads

HJQ = J
∑

⟨ij⟩
(Dij − 1

2Sz
i Sz

j ) + Q
∑

〈
ikm
jln

〉
DijDklDmn, (5)

where the −(1/2)Sz
i Sz

j term introduces the easy-plane
anisotropy and breaks the SU(2)spin symmetry down to
U(1)spin explicitly. For small Q, the model essentially
reduces to an XXZ model, which has an XY antiferro-
magnetic (AFM) ground state that further breaks the
U(1)spin symmetry spontaneously. When Q is large, the
dimmer interaction favors an valance bond solid (VBS)
ground state, which breaks the lattice C4 rotation sym-
metry. Previous QMC study found a direct continuous
AFM-VBS transition in the SU(2)spin symmetric J-Q3

model. Here we show that the continuous transition per-
sists to the easy-plane case.

Near the critical point, the lattice anisotropy becomes
irrelevant, such that the C4 rotation symmetry can be
enlarged to an U(1)latt symmetry at low-energy. At the
critical point, the U(1)latt further merge with the U(1)spin

symmetry to the emergent O(4) symmetry such that the
components of the O(4) vector N = (Dx, Dy, Sx, Sy) all
become degenerated, where Dµ

i ≡ Di,i+µ̂ (for µ = x, y).
The AFM-VBS transition is unstable towards the ax-
ial Zeeman field −hz

∑
i Sz

i , which will drive the sys-
tem to the spin-polarized paramagnetic (PM) phase with
⟨Sz⟩ ̸= 0, as illustrated in the schematic phase diagram
Fig. ??(c). Nevertheless, the full U(1)latt ×U(1)spin sym-
metry is preserved in the PM phase.

The N = 2 QED fixed point has an emergent O(4)
symmetry. The corresponding O(4) vector reads

N = ψ̄(i, σ1, σ2, σ3)ψ̃ + h.c., (6)

where ψ̃ = (ψ̃1, ψ̃2)
ᵀ denotes the two-component dual

fermion, originated from the double monopole operator
in the QED theory. In the BH model (or the JQ model),
the O(4) vector N corresponds to the real and imaginary
part of the spin Σ and the charge ∆ operators (or the
dimmer D+ = Dx +iDy and the XY spin S+ = Sx +iSy

operators), as in the last line of Tab. ??.

In this work, we measure the following exponents at

FIG. 1. Schematic phase diagrams of (a) the bilayer honeycomb (BH) model, (b) the easy-plane J-Q3 (EPJQ) model, and
(c) the N = 2 QED theory. In (a), the BH model contains two symmetry-breaking phases: the spin-density-wave (SDW) and
superconducting (SC) phases, and two symmetric phases: the bosonic symmetry-protected topological (BSPT) and the trivial
Mott-insulating phases. In (b), the EPJQ model also contains two symmetry-breaking phases: the Néel antiferromagnetic
(AFM) phase and the valence-bond solid (VBS) phase, and two spin-polarized phases induced by an external staggered field.
In (c), as was shown in Ref. [21, 26, 46], when tuning the two masses m and M , the N = 2 QED theory also has two symmetry-
breaking (SB) phases and two symmetric (SY) phases, one of which is the BSPT state. In all models, the four phases merge at
the deconfined quantum critical point. Phases of the same color can be mapped to each other among the models, following the
duality relations proposed in the table on the right. The double arrows in (a) and (b) indicate the quantum phase transitions
investigated numerically in this paper.

as the scaling dimension of h in the easy-plane NCCP1 at
its critical point r = 0, while the scaling dimension of M
should be the same as that of r. Also, as a consequence
of these dualities, i.e., the emergent O(4) symmetry of
the two theories, the four components of N should all
have the same scaling dimension at the critical point.

Although the duality can be observed and “derived”
based on various arguments, it has not been rigorously
proven yet. Both Eq. (1a) and Eq. (1b) are strongly in-
teracting conformal field theories, and there is no obvi-
ous analytical method that can provide rigorous results
for either case. However, both theories can presumably
be realized using lattice models, which can be simulated
using numerical methods. The goal of this work is to
compare the quantitative properties of such lattice mod-
els and look for evidence of the proposed duality. As we
will show in the later sections, within small error bars of
the critical exponents obtained using QMC simulations,
our results confirm several predictions of the duality.

Because the duality of the two theories in Eq. (1) was
derived based on the assumption of the basic fermion-
boson duality [37, 47], a proof of the former duality indi-
rectly also proves the latter. In principle this result can
lead to a number of further dualities between different
fermionic and bosonic Lagrangians. Thus, the impact of
our work is not limited to the proof of the duality between
Eq. (1a) and Eq. (1b), but also provides justification for
many other cases.

III. LATTICE MODELS

The easy-plane NCCP1 model is the field theory that
presumably describes the deconfined quantum-critical
point between an in-plane (XY) antiferromagnet (AFM)
and a valence-bond solid (VBS) [28, 29, 43]. This tran-

sition in the case of full SU(2) symmetry of the Hamil-
tonian has been realized by the J-Q and related mod-
els, and these have been extensively simulated numeri-
cally using unbiased QMC techniques [27, 31, 48–57]. Al-
though there are studies that indicate that some version
of the J-Q model with an inplane spin symmetry and
other U(1) symmetric models should lead to a first or-
der transition [58–61], in this work we demonstrate that
a different model, the EPJQ model, instead leads to a
continuous transition in some regions of its parameter
space. The r and h terms in Eq. (1) correspond to the
distance from the critical point, Q − Qc, and the stag-
gered magnetic field hz(−)iSzi , respectively, in the lattice
model. The components of the O(4) vector in Eq. (2) cor-
respond to the two-component easy-plane Néel and two-
component VBS (dimer) order parameters of the EPJQ
model.

The N = 2 QED action has been simulated directly
using a lattice QED model [62], and the scaling dimen-
sion of M was computed in this way. Also, N = 2 QED
with a noncompact U(1) gauge field is the effective theory
that describes the transition between the bosonic sym-
metry protected topological (BSPT) state and a trivial
Mott state in 2D [25, 26]. This transition was also real-
ized in an interacting fermion model on a bilayer honey-
comb (BH) lattice introduced in Refs. [22, 23] and sim-
ulated [22–24, 63] with a determinantal QMC method
(DQMC) [64, 65]. The m and M terms in Eq. (1) corre-
spond to two different interactions in the lattice model,
namely, the interlayer pair-hopping V − Vc, measured
with respect to its critical value, and the Hubbard-like
on-site interaction U ; the Hamiltonian will be specified
in detail below. The lattice model of Ref. [23] has an ex-
act SO(4) symmetry that precisely corresponds to the
proposed emergent symmetry of the N = 2 QED. It
should further be noted that the fermions in the BH
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model do not directly correspond to the Dirac fermions of
the N = 2 QED action, because the former are not cou-
pled to any dynamical gauge field. The relation between
the two systems instead arises from the correspondence
of the gauge invariant fields of N = 2 QED to the low-
energy bosonic excitations of the BH model.

Using the BH model and the EPJQ model, the duality
between the N = 2 QED and the NCCP1 field theo-
ries can be realized on the lattice. The O(4) vector N
can also be conveniently defined in both lattice models,
with explicit forms that will be explained below. Thus,
the two systems can be investigated and compared via
unbiased large-scale QMC simulations—the pursuit and
achievement of this work.

In the following, we will first define the microscopic
lattice models in detail. In the subsequent sections IV
and V we present comparative numerical studies of the
models and demonstrate strong support for the duality
relations listed in the table in Fig. 1.

A. Bilayer honeycomb model

The BH model is a fermionic model defined on a hon-
eycomb lattice [22–24, 63]. On each site, we define four
flavors of fermions (two layers × two spins);

ci = (ci1↑, ci1↓, ci2↑, ci2↓)
ᵀ. (3)

The Hamiltonian is

HBH = Hband +Hint, (4)

where the band and interaction terms are given by

Hband = −t
∑

〈ij〉
c†i cj + λ

∑

〈〈ij〉〉
iνij(c

†
iσ

3cj + h.c.), (5a)

Hint = V
∑

i

(c†i1↑ci2↑c
†
i1↓ci2↓ + h.c.), (5b)

where 〈ij〉 and 〈〈ij〉〉 denote nearest-neighbor intra- and
inter-layer site pairs, respectively. The band Hamiltonian
Hband is just two copies of the Kane-Mele model [66],
which drives the fermion into a quantum spin Hall state
with spin Hall conductance σsH = ±2 (depending on the
sign of the spin-orbit coupling λ). Including a weak in-
teraction V , the bilayer quantum spin Hall state auto-
matically becomes a BSPT state [23, 24, 67], where only
the bosonic O(4) vector N remains gapless (and pro-
tected) at the edge, while the fermionic excitations are
gapped out (as will be discussed in more detail below).
However, a strong interlayer pair-hopping interaction V
eventually favors a direct product state of anti-bonding
Cooper pairs. In the strong interaction limit (V → ∞),
the ground state of the BH model reads

|GS〉 =
∏

i

(c†i1↑c
†
i1↓ − c

†
i2↑c
†
i2↓)|0c〉, (6)

with |0c〉 being the fermion vacuum state. This state has
no quantum spin Hall conductance, i.e., σsH = 0, and,
more importantly, it is a direct product of local wave
functions, hence dubbed trivial Mott insulator state. It
was found numerically that there is a direct continuous
transition between the BSPT and the trivial Mott phases
at Vc/t = 2.82(1) [23, 63], where the single-particle exci-
tation gap does not close but the excitation gap associ-
ated with the bosonic O(4) vector closes and the quan-
tized spin Hall conductance changes from ±2 to 0.

The low-energy bosonic fluctuations around the
critical point form an O(4) vector, with N =
(ReΣ, ImΣ,Re∆, Im∆) and the components are

Σi = (−1)i(c†i1↑ci2↓ + c†i2↑ci1↓), (7a)

∆i = (ci1↓ci1↑ − ci2↓ci2↑), (7b)

where Σ carries spin and ∆ carries charge. The BH
model Eq. (4) respects the global SO(4) symmetry of the
vector N . If the symmetry is lowered to U(1)spin ×
U(1)charge, then, based on the analysis of N = 2 QED,
in principle the mass term Mψ̄σ3ψ is allowed; hence the
BSPT-Mott transition is unstable towards spontaneous
symmetry-breaking of the remaining symmetries. The
symmetry of the mass term Mψ̄σ3ψ is identical to the
following Hubbard-like interaction (both forming a (1, 1)
representation of the SO(4)):

U

2

∑

i

(∆†i∆i+∆i∆
†
i −Σ†iΣi−ΣiΣ

†
i ) = U

∑

i

ρi↑ρi↓. (8)

Here ρiσ is the density operator (for σ =↑, ↓ spins),

ρiσ = (c†i1σci1σ + c†i2σci2σ − 1), (9)

which counts the number of σ-spin fermions in both lay-
ers on site i with respect to half-filling. The repulsive
U > 0 (or attractive U < 0) interaction drives spin
〈Σ〉 6= 0 (or charge 〈∆〉 6= 0) condensation, leading to a
spin-density wave (SDW) [24] (or superconducting) phase
that breaks the U(1)spin [or U(1)charge] symmetry spon-
taneously. This process is illustrated in the schematic
phase diagram Fig. 1(a).

B. Easy-plane JQ model

Our EPJQ model is a spin-1/2 system with anisotropic
antiferromagnetic couplings which we here define on the
simple square lattice of L2 sites and periodic boundary
conditions. It is a “cousin” model of the previously stud-
ied SU(2)spin J-Q3 model [49–51]which in turn is an ex-
tension of the original J-Q, or J-Q2, model [27]. Starting
from the spin-1/2 operator Si on each site i, we define
the singlet-projection operator on lattice link ij;

Pij = 1
4 − Si · Sj , (10)
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then the model Hamiltonian reads

HJQ = −J
∑

〈ij〉
(Pij −∆Szi S

z
j )−Q

∑

〈ijklmn〉
PijPklPmn, (11)

where the ∆Szi S
z
j term for ∆ ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry
down to U(1)spin explicitly. We have studied two cases:
the maximally-planar case ∆ = 1 and the less extreme
case ∆ = 1/2. In the latter case, we observe very good
scaling behaviors indicating a continuous transition, with
rapidly decaying (with the system size L) scaling correc-
tions, while for ∆ = 1 the behavior suggests a first-order
transition. Thus, the model may harbor a tricritical point
separating first-order and continuous transitions some-
where between ∆ = 1/2 and ∆ = 1. However, we will
leave the possible tricritical point to future investigation.
As far as the duality is concerned, in this section we dis-
cuss our results for ∆ = 1/2, and in Appendix B we
present results for ∆ = 1.

We set J + Q = 1 in the simulations and define the
control parameter as the ratio

q =
Q

J +Q
. (12)

For small q, the model essentially reduces to an XXZ
model, which has an XYAFM ground state that breaks
the U(1)spin symmetry spontaneously. When q is large,
the dimer interaction favors a VBS (columnar-dimerized)
ground state, which breaks the lattice C4 rotation sym-
metry as in the SU(2)spin J-Q2 and J-Q3 models [27,
31, 48–51], where previous QMC studies found a direct
continuous AFM-VBS transition. Here we demonstrate
that the continuous transition persists in EPJQ model,
Eq. (11), with ∆ = 1/2. The reason for choosing the
Q3 term (three-dimer interaction) instead of the simpler
Q2 interaction (two-dimer coupling) is that it produces
a more robust VBS order when the ratio q is large, thus
leading to a smaller critical-point value [as in the SU(2)
case [49, 50]] with more clearly observable flows to the
VBS state on that side of the transition.

The XYAFM order in the EPJQ model can be directly
probed by the local spin components Sx and Sy, and we
will also study the critical fluctuations in the Sz compo-
nent. We will often not write out the staggered phase
factor (−1)xi+yi corresponding to AFM order explicitly
(here xi and yi refer to the integer-valued lattice coordi-
nates of site i); in fact in the case of the XY-anisotropy
in a model with bipartite interactions, the phase can also
simply be transformed away with a sublattice rotation
(and then the XYAFM phase maps directly onto hard-
core bosons in the superfluid state). In our simulations
the staggered phase is absent for the Sx and Sy com-
ponents but present for the Sz component. The AFM-
VBS transition is unstable towards an axial Zeeman field,
when HJQ → HJQ +HZ with

HZ = −hz
∑

i

(−1)xi+yiSzi , (13)

which drives the system to the spin-polarized phase with
〈Sz〉 6= 0, as illustrated in the schematic phase diagram
in Fig. 1(b). Here we consider only h = 0.

To study the columnar VBS (dimer) order realized in
the EPJQ model, we define

Dx
i = (−1)xiSi · Si+x̂, (14a)

Dy
i = (−1)yiSi · Si+ŷ, (14b)

where i+ x̂ and i+ ŷ denote neighbors of site i in the
positive x and y-direction, respectively. At the critical
point, the proposed self-duality (through the putative
duality with N = 2 QED) implies that the C4 rotation
symmetry and the U(1)spin symmetry are enlarged into
an emergent O(4) symmetry, such that the components
of the O(4) vector (after some proper normalization)

N = (Dx, Dy, Sx, Sy), (15)

should all have the same scaling dimension [21].

C. Duality relations

Fig. 1 summarizes the intuitive duality relations among
the BH, EPJQ, and QED models; this can also be ob-
served from the similarity of their four-quadrant phase
diagrams [68]. To numerically prove the validity of these
duality relations, in this work we investigate the follow-
ing critical behaviors at the BSPT–Mott transition in the
BH model:

ξ ∼ |V − Vc|−νBH , (16a)

〈ρi↑ρi↓ρj↑ρj↓〉 ∼ |rij |−1−ηρBH , (16b)

〈∆†i∆j〉 ∼ |rij |−1−η∆
BH ; (16c)

where rij is the lattice vector separating the sites i, j,
ξ is the correlation length of the critical O(4) bosonic
modes of the system, and the density ρiσ and pairing
∆i operators have been defined in Sec. III A. We also
study the following expected critical scaling behavior at
the AFM–VBS transition in the EPJQ model:

ξ ∼ |Q−Qc|−ν
xy
JQ , (17a)

〈Szi Szj 〉 ∼ |rij |−1−ηzJQ , (17b)

〈S+
i S
−
j 〉 ∼ |rij |−1−ηxyJQ . (17c)

where ξ is the correlation length of the easy-plane spins.
If the duality in Eq. (1) is correct, and provided that

N = 2 QED is indeed the theory for the BSPT–Mott
transition, then the exponents defined above must satisfy
the following relationships [21]:

3− 1

νBH
=

1 + ηzJQ

2
, (18a)

3− 1

νxyJQ

=
1 + ηQED

2
=

1 + ηρBH

2
, (18b)

η∆
BH = ηxyJQ. (18c)
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Here ηQED is the anomalous dimension of the fermion
mass ψ̄σ3ψ, i.e., the M mass term in our notation in
Eq. (1a), which was numerically estimated in the recent
lattice QED calculations in Ref. [62].

IV. RESULTS FOR THE EPJQ MODEL

In this section we present our numerical results at
the continuous AFM–VBS phase transition of the EPJQ
model, obtained using large-scale SSE-QMC [69, 70] sim-
ulations. Here we discuss only the case ∆ = 1/2 in the
Hamiltonian Eq. (11); some results for ∆ = 1 are pre-
sented in Appendix B. In the SSE simulations we scaled
the inverse temperature as β = 2L, corresponding to the
dynamic exponent z = 1 (β ∼ Lz) and staying in the
regime where the system is close to its ground state for
each L. We consider L up to 44.

A. Crossing-point analysis

The first step is to determine the order of the transition
and the position of the critical point (if the transition is
continuous). To this end, following the recent example
in Ref. [31] for the SU(2) J-Q model, we first analyze
crossing points of finite-size Binder cumulants, defined
for the AFM order parameter as

U(q, L) = 2− 〈M
4
xy〉

〈M2
xy〉2

, (19)

where M2
xy is the square of the easy-plane magnetization

operator,

M2
xy =

1

L4

∑

i,j

(−1)i+jS+
i S
−
j , (20)

and M4
xy is its square. The “phenomenological renor-

malization” underlying the crossing-point analysis and
our technical implementations of it are discussed in Ap-
pendix A. Here we show our numerical results and an-
alyze them within the scaling relationships presented in
the appendix.

As shown in Fig. 2(a), curves of U(q, L) graphed for
different L cross each other at points tending to a value
qc. In a finite-size system the deviation of U(q, L) from
the asymptotic crossing point depends on L in a way that
involves a scaling-correction exponent. For a finite-size
pair (L, 2L), the crossing is at [q∗c (L), U∗c (L)] and at a
continuous transition one expects

q∗c (L) = qc + aL−(1/νxyJQ+ω), (21)

where νxyJQ is the correlation-length exponent and ω is

the smallest subleading exponent (which normally arises
from the leading irrelevant field). As shown in Fig. 2(b),
an extrapolation with the above form to infinite size

0.56 0.58 0.60 0.62 0.64 0.66 0.68
q

0.2

0.0

0.2

0.4

0.6

U
(q
,L

)

(a)

L=6

L=8-40

L=44

0.56

0.60

0.64

q
∗ c

(b)

0.06

0.12

0.18

U
∗ c

(c)

0.00 0.06 0.12 0.18
1/L

1.6

2.0

2.4
1/
ν
∗

(d)

FIG. 2. Crossing-point analysis of the EPJQ model at ∆ =
1/2. (a) U(q, L) vs q in the neighborhood of qc for several
system sizes L. (b) The crossing points seen in (a) for system-
size pairs (L, 2L), analyzed according to the expected finite-
size scaling form, Eq. (21). The procedure including error
analysis gives qc = 0.6197(2) and 1/νxyJQ + ω = 4.0(2). (c) A
similar analysis of U∗

c (L), giving ω = 2.3(1). (d) Finite-size
estimates νxy,∗JQ of the correlation-length exponent defined in
Eq. (23), using the slopes of the cumulants at the (L, 2L)
crossing points. Analysis according to Eq. (24) gives νxyJQ =
0.48(2) for the exponent in the thermodynamic limit.

gives qc = 0.6197(2) (where the number in parenthesis
indicates the one-standard-deviation error in the preced-
ing digits, as obtained using numerical error propagation
with normal-distributed noise added to the data points)
and 1/νxyJQ + ω = 4.0(2). The finite-size crossing value of

the cumulant itself, U∗c (L), should approach its thermo-
dynamic limit Uc as

U∗c (L) = Uc + aL−ω. (22)

This form is used in Fig. 2(c) and delivers ω = 2.3(1).
In principle we can now extract νxyJQ, though the so ob-
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tained value and the independently determined value of ω
in general should be viewed with some skepticism. The
exponents are often affected by neglected higher-order
scaling corrections and should be regarded as an “effec-
tive” critical exponents that flow to their correct values
upon increasing the system sizes. Nevertheless, the fits
with a single correction exponent are very good and this
may indicate that the next-order corrections are small.

The correlation length exponent νxyJQ can be indepen-
dently and more reliably obtained from the slope of the
Binder cumulant as

1

νxy,∗JQ (L)
= ln

(U ′2(2L)

U ′2(L)

) 1

ln(2)
, (23)

where U ′2(L) is the derivative of U(q, L) over q evalu-
ated at the crossing point between the L and 2L curves
(which we extract by interpolating data close to the cross-
ing point by cubic polynomials). The correlation-length
exponent in the thermodynamic limit can be extracted
from the expected leading finite-size form

1

νxy,∗JQ (L)
=

1

νxyJQ

+ L−ω. (24)

As shown in Fig. 2(d), the fit to this form is statistically
good if the smallest system sizes are excluded, and an
extrapolation then gives νxyJQ = 0.48(2). Thus, the com-

bination νxyJQ + ω based on the independently evaluated
two exponents is in remarkably good agreement with the
value of the sum extracted directly using Eq. (21) with
the data in Fig. 2(b). This serves as a good consistency
check and again indicates that the higher-order finite-size
scaling corrections should be small (i.e., the following cor-
rection exponents beyond ω must either have much larger
values or the prefactors must be small, or both). Further
support for this scenario can be observed in Fig. 2(d),
where the data point for the smallest system size shown
has a very large deviation from the good fit to the other
points, suggesting a very rapidly decaying correction.

In Fig. 2(a) one may worry about the fact that the
Binder cumulant forms a minimum extending to negative
values as the system size increases. A negative Binder cu-
mulant often is taken as a sign of a first-order transition.
However, it is now understood that also some continuous
transitions are associated with a negative Binder cumu-
lant in the neighborhood of the critical point, reflecting
non-universal anomalies in the order-parameter distribu-
tion. Often the negative peak value grows slowly, e.g.,
logarithmically, with the system size, instead of the much
faster volume proportionality expected at a first-order
phase transition. This issue is discussed with examples
from classical systems in Ref. [71]. Here we do not see
any evidence of a fast divergence of the peak value; thus
the transition should still be continuous.

10-2〈 D2〉

(b)

10-2

10-1

〈 M2 xy
〉

(a)

10 20 30 40
L

10-3

10-2

〈 M2 z
〉

(c)

FIG. 3. Extraction of the anomalous dimensions ηxyJQ and
ηzJQ of the EPJQ model at the estimated critical point qc
for ∆ = 1/2. The squares of order parameters are graphed
vs L and analyzed with powerl-law fits (lines on the log-log
plots). The off-diagonal spin order parameter square M2

xy(L)
in (a) and the dimer oreder parameter square D2(L) in (b)
give ηxyJQ = 0.13(3). The diagonal spin order parameter square

M2
z (L) in (c) gives ηzJQ = 0.91(3).

B. Anomalous dimensions

To determine the anomlous dimensions, i.e., the critical
correlation-function exponents ηxyJQ and ηzJQ in Eq. (17),
we analyze the system-size dependence of the squares of
the easy-plane off-diagonal spin order parameter M2

xy(L)
in Eq. (20) and dimer order parameter

D2(L) =
1

2

(
((Dx(L))2 + (Dy(L))2

)
, (25)

where the x and y dimer operators are the appropriate
Fourier transforms of Eqs. (14) corresponding to a colum-
nar VBS;

Dx =
1

L2

∑

i

(−1)xiDx
i , (26a)

Dx =
1

L2

∑

i

(−1)yiDy
i . (26b)
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In the diagonal Sz channel we study the system size
dependence of the staggered magnetization

M2
z =

1

L4

∑

i,j

(−1)i+jSzi S
z
j . (27)

All these integrated correlation functions should scale as
the correlation functions in Eq. (17) with the distance
|rij | replaced by the system length L.

This dimer order parameter should be governed by the
same exponent ηxyJQ as the off-diagonal spin order param-

eter if the predicted O(4) symmetry is manifested. In
contrast, the diagonal magnetic order parameter is as-
sociated with a different (larger) anomalous dimension
ηzJQ, according to the table in Fig. 1. We have evaluated
the order parameters at q = 0.620, consistent with the
value of qc determined in previous subsection. Results
are shown in Fig. 3 for system sizes up to L = 32 and
L = 40 for the dimer and spin order parameters, respec-
tively. In Fig. 3(a,b) we show that M2

xy and D2 can be

fitted with the same exponent, ηxyJQ = 0.13(3), while the

fit to M2
z in Fig. 3(c) delivers a distinctively different ex-

ponent; ηzJQ = 0.91(3).

V. RESULTS FOR THE BILAYER
HONEYCOMB MODEL

In this section we present our numerical results on
the continuous phase transition in the BH model, where
an interaction-driven phase transition between a BSPT
phase and a trivial Mott insulator is investigated via
large-scale DQMC simulations [23, 63, 72] in the ground-
state projector version[73]. Acting with the operator
e−ΘH on a trial state (a Slater determinant) with the
projection ’time’ Θ large enough for converging the finite
system to its ground state, we simulated linear system
sizes L = 12, 15, 18, 21 and 24, with Θ = 50 for L ≤ 18,
Θ = 55 for L = 21, and Θ = 60 for L = 24. The
imaginary-time discretization step was ∆τ = 0.05, which
is sufficiently small to not lead to any significant devia-
tions of scaling behaviors from the ∆τ = 0 limit.

A. The continuous topological phase transition

We first present simulation results supporting a con-
tinuous BSPT–Mott transition (as was also previously
discussed in Ref. [23, 63]). Figure 4(a) shows the deriva-
tive of the kinetic energy density of the BH Hamiltonian
Eq. (4) with respect to the control parameter V of the
phase transition,

∂〈Hk〉
∂V

= − t

N

∂

∂V

∑

〈ij〉
〈c†i cj + h.c.〉. (28)

Here a broad peak develops close to Vc, but there is no
sign of a divergence, as would be expected at a first-
order transition. Figure 4(b) shows the derivative of the

2.5 2.6 2.7 2.8 2.9 3.0
0.2

0.6

1.0

1.4

1.8

〈 H k〉 /V

(a)

L=6

L=9

L=12

2.5 2.6 2.7 2.8 2.9 3.0
0.1

0.2

0.3

−
〈 H〉 /

V

(b)

L=6

L=9

L=12

2.5 2.6 2.7 2.8 2.9 3.0
V

0

4

8

12

16

χ
p
a
ir
(i
ω

=
0,

Γ
)

(c)L=6

L=9

L=12

L=15

L=18

FIG. 4. DQMC results for the BH model close to its phase
transition. The derivative with respect to the coupling V of
(a) the kinetic energy density and (b) the total ground-state
energy density for linear system sizes L = 6, 9 and 12. Panel
(c) shows the zero-frequency susceptibility of the O(4) vector
in the pairing channel for L = 6, 9, 12, 15, 18. The dashed
line indicates our estimated critical point Vc = 2.82(1).

ground state energy density, which can be conveniently
evaluated by invoking the Hellmann-Feynman theorem;

∂〈H〉
∂V

=
〈∂H
∂V

〉
=

1

N

∑

i

〈c†i1↑ci2↑c
†
i1↓ci2↓ + h.c.〉. (29)

For this derivative a first-order transition would lead to a
sharp kink developing with increasing L (corresponding
to a real or avoided level crossing). The smooth behavior
supports a continuous phase transition, though of course
a very weak first-order transition would produce a visible
singular behavior only for larger system sizes than we
consider here.

To determine the phase-transition point Vc, we have
further calculated the zero-frequency susceptibility of the
O(4) vector (where we here take the on-site spin-singlet
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pairing operator), defined as

χpair(iω = 0,Γ) =

∫ +∞

0

S(τ,Γ)dτ, (30)

where the dynamic pair-pair correlation function is de-
fined as

S(τ,Γ) =
1

L2

∑

ij

eik·(Ri−Rj)
〈∆†i (τ)∆j + ∆†j(τ)∆i〉

2
,

(31)
where k = 0 and ∆i defined in Eq. (7). As demon-
strated in Fig. 4(c), this quantity exhibits a sharp peak,
as expected at a gapless critical point with power-law
correlations in both space and time. The divergence is
considerably slower than the ∝ space-time-volume be-
havior expected at a first-order transition. Due to the
large computational effort needed for these DQMC sim-
ulations, we do not have a sufficient density of points
close to Vc to carry out a systematic analysis of the drift
of the peak position, but the data nevertheless allow us
to roughly estimate the convergence to the critical point
Vc/t = 2.82(1).

B. O(4) gap and BH correlation-length exponent

We have also extracted the excitation gaps, ∆O(4), cor-
responding to the O(4) vectors defined in Eq. (7). Ac-
cording to Refs. [23, 63] and Eq. (31), the O(4) gap is
obtained from the imaginary-time decay of the dynami-
cal O(4) vector correlation function, and, as discussed in
Sec. II and Sec. III A, O(4) bosonic modes are expected
to become gapless (with power-law correlation) at the
BSPT-Mott critical point. Results for ∆O(4) as a func-
tion of V/t for system sizes L = 6, 9, 12, 15, 18 close to Vc
are presented in Fig. 5(a). As expected, ∆O(4) from ev-
ery system size L exhibits a dip close to Vc, with the gap
minimum decreasing with L as expected with an emer-
gent gapless point at Vc. In Fig. 5(b) we analyze the
size dependence of the gap at three different coupling
values; V/t = 2.80, 2.82, 2.85. At V/t = 2.82, L∆O(4)

extrapolates linearly in 1/L to a nonzero value, showing
that the leading behavior of ∆O(4) at Vc is 1/L. This
is in line with the expectation that the dynamic expo-
nent z = 1 at the BSPT-Mott transition (and is required
also for the proposed duality). The behaviors of ∆O(4)L
at V/t = 2.80, 2.85 indicate eventual divergencies when
L→∞, as expected on either side of the quantum critical
point. This constitutes strong evidence of a continuous
transition, instead of a first-order transition at which one
instead expects a gap closing exponentially fast.

To extract the correlation-length exponent νBH, we
have performed data collapse with the O(4) gap away
from the critical point, as shown in Fig. 4(c). Here we
focus on the regime V > Vc, where we find less scaling
corrections than for V < Vc and an almost perfect data-
collapse according to the expected quantum-critical form

∆O(4)L = f [(V/Vc − 1)L1/νBH ]. (32)
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FIG. 5. (a) Excitation gaps computed from the imaginary-
time decay of the O(4) vector across the BSPT-Mott transi-
tion for the BH model with L = 6, 9, 12, 15, 18. A gap closing
at Vc = 2.82t (vertical dashed line) is expected. (b) Finite-
size scaling of L∆O(4) for V/t = 2.80, 2.82, 2.85 vs the inverse
system size. The behavior at V/t = 2.82 indicates z = 1. (c)
Data collapse of the data in (a) according to the expected scal-
ing form Eq. (32), yielding νBH = 0.53(5) and Vc/t = 2.80(1).

Treating both νBH and Vc as free parameters, the best
data collapse delivers νBH = 0.53(5) and Vc/t = 2.80(1).
This value of Vc agrees quite well with the result Vc =
2.82(1) estimated roughly from the susceptibility peak
in Fig. 4, adding further credence to the analysis of the
critical point even with the rather limited range of sys-
tem sizes accessible (as compared with the EPJQ model).
Moreover, since we already determined ηzJQ = 0.91(3) in
the EPJQ model, we can use the duality relationship in
Eq. (18a) to predict that the correlation-length exponent
of the BH model should be νBH ∼ 0.49(2), which is fully
consistent the number determined from the O(4) gap.
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C. Anomalous dimensions

Finally, we study the critical equal-time correlations
in the BH model. Here we have used V = 2.817 for the
longest simulations. This value is within the error bars of
the critical value Vc = 2.82(1) and, as we will also show,
there are no statistically detectable differences between
data at V = 2.820 and 2.817 for the quantities studied
in this subsection.

Using one of the components of the O(4) order pa-

rameter, 〈∆†i∆j〉 with ∆i defined in Eq. (7), we again
construct a squared order parameter. We can use the
susceptibility Eq. (31) to define a corresponding equal-
time spatially-integrated correlation function,

S∆

L2
=
S(τ = 0,Γ)

L2
, (33)

where the normalization gives the same scaling behav-
iors as in Eq. (16) with the distance |rij | replaced by
L. The analysis illustrated in Fig. 6(a) indicates a very
good power-law scaling, with deviations seen only for the
smallest system size (which we exclude from the fit). The
fit delivers the exponent η∆

BH = 0.10(1), which is fully
consistent with the EPJQ exponent ηxyJQ = 0.10(2) ob-

tained in Sec. IV B. Hence, the duality relation Eq. (18c)
is satisfied to within the statistical errors.

In principle the anomalous dimension can also be ob-
tained from the susceptibility in Fig. 5(c). Standard scal-
ing arguments give that the peak height of a generic sus-
ceptibility χ should scale as χpeak ∝ L2−η (when the
dynamic exponent z = 1). We find that the peak in
χpair scales approximately as L2, i.e., η∆ is very small,
but here there appears to be significant scaling correc-
tions. Moreover, there is large variation of the values for
the largest size, L = 18, close to the critical point, and
we would need additional points to reliably estimate the
peak value. We therefore cannot obtain an independent
meaningful estimate for η∆

BH from these data.
We next test the duality relation Eq. (18b). With

νxyJQ = 0.48(3) obtained in Sec. IV A we expect ηρBH ≈ 1.

Further, according to Ref. [62], the exponent ηρBH should
be equal to the anomalous mass dimension ηQED ofN = 2
QED, for which the value ηQED = 1.0(2) was obtained
from Monte Carlo simulations. Thus, we already have
good consistency following from the predicted duality be-
tween ηQED and νxyJQ. Turning to the more direct test

with the BH model, in Fig. 6(b) we plot the squared or-
der parameter corresponding to the pair-density,

Sρ
L2

=
1

L4

∑

i,j

〈ρi↑ρi↓ρj↑ρj↓〉. (34)

For this quantity, as shown in Fig. 6(b), all five system
sizes available give results fully consistent with a power-
law decay, with no statistically visible scaling corrections.
The fit to the five data points gives the anomalous dimen-
sion ηρBH = 1.00(1), which is consistent with both ηQED
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10-2

S
∆
/
L

2
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V=2.817t

V=2.82t
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L

10-4S
ρ
/L

2
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V=2.817t

V=2.82t

FIG. 6. Analysis of the anomalous dimensions η∆
BH and ηρBH

of the BH model from squared order parameters close to the
critical point. Only the V = 2.817 data points for each quan-
tity are used in the fits, and the three points for V = 2.82 do
not exhibit any deviations from the V = 2.817 values within
the error bars. (a) shows the O(4) order parameter defined in
Eq. (33). A power-law fit (straight line on the log-log scale) to
the L ≥ 15 data delivers the exponent η∆

BH = 0.10(1). (b) The
pair-density order parameter Eq. (34). Here the power-law fit
works well for all system sizes and we obtain ηρBH = 1.00(1).

and νxyJQ, but with a significantly smaller statistical error.

Thus, the duality relation in Eq. (18b) is also confirmed
to within error bars.

It is remarkable that the BH model actually seems to
give better results (smaller error bars) for the anomalous
dimensions than the EPJQ model, even though system
lengths roughly twice as large were used for the latter.
The reason is that the statistical errors on the raw data
are smaller in the DQMC simulations. It is still pos-
sible that there are scaling corrections present that are
not clearly visible with such a small range of system sizes,
and there may then be some corrections to the exponents
beyond the purely statistical error bars (one standard de-
viation) reported above. The EPJQ results are important
in this regard as they seem to show no significant correc-
tions even with the considerably larger range of system
sizes. The lack of significant corrections is also supported
by the good agreement between the non-reivial BH and
EPJQ exponents, as predicted by the duality conjecture.
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VI. DISCUSSION

We have performed detailed numerical tests on the re-
cently proposed duality summarized by the predicted ex-
ponent relationships between the BH and EPJQ mod-
els in Eq. (18). The relationships were confirmed within
statistical precision at the level of a few percent in the
values of the critical exponents. The thus confirmed du-
ality of the underlying low-energy quantum field theories,
Eq. (1), is of great importance and interest in condensed-
matter physics, because it relates two seemingly different
quantum phase transitions that have been individually
under intense studies during the past several years: the
bosonic topological phase transition and the easy-plane
deconfined quantum phase transition. The duality was
derived using the more basic dualities between field the-
ories that involve only one flavor of matter field, and
sometimes also a Chern-Simons term of the dynamical
gauge field.

As a consequence of confirming the particular rela-
tionship between critical exponents, our study also pro-
vides quantitative evidence for the underlying basic du-
alities for theories with one flavor of matter field [32–
37]. These basic dualities supported by our work repre-
sent a significant step in our understanding of (2 + 1)D
conformal field theories. They also form the foundation
of a large number of other recently proposed dualities
[40, 42, 44, 45, 74–78]. Moreover, they lend support to
many other dualities that follow from the same logic and
reasoning, such as the duality of Majorana fermions dis-
cussed in Refs. [79, 80].

To follow up on our results and insights presented
here, additional numerical investigations are called for
to check other predictions made within these proposed
dualities. For example, in Ref. [21] it was proposed that
the Gross-Neveu fixed point of the N = 2 QED is dual
to the SU(2) version of the NCCP1 model, and also has
an emergent SO(5) symmetry. This symmetry has re-
cently been discussed within SU(2) deconfined quantum-
criticality as well, and quite convincing results pointing
in this direction were seen in a three-dimensional loop
model [57]. Scaling with the same anomalous dimension
for both spin and dimer correlators had also been ob-
served already some time ago in the SU(2) J-Q model
[81]. Although we have identified the N = 2 QED as the
bosonic topological phase transition in our bilayer hon-
eycomb lattice model, we have so far been unable to find
the corresponding Gross-Neveu fixed point. Identifying
the additional interactions that will be required to drive
this transition in the BH model is an important topic for
forther research.

Following previous computational studies of decon-
fined quantum phase transition with SU(2) spin-rotation
symmetry in J-Q models [27, 31, 49], we have here iden-
tified a lattice model—the EPJQ model—hosting a con-
tinuous phase transition between the U(1) (planar) Néel
and VBS states. The fact that this phase transition is
continuous is in itself an important discovery, given that

U(1) deconfined-quantum criticality had essentially been
declared non-existent, due to unexplained hints of first-
order transitions in some other planar models and what
seems like definite proofs in other cases [58, 60, 82]. Here
(as further discussed in Appendix B) we have shown that
the EPJQ model defined in Eq. (11) can host first-order
or continuous transitions, depending on the degree of
spin-anisotropy parametrized by the Ising coupling ∆ in
Eq. (11). At ∆ = 1/2, we find scaling behaviors with ap-
parently much less influence of scaling corrections than
in the SU(2) J-Q model at its deconfined critical point
[31], i.e., the leading correction exponent ω is much larger
in the EPJQ model. Interestingly, in both cases the
correlation-length exponent is unusually small, close to
1/2, while well-studied transitions such as the O(N) tran-
sitioins in three dimensions have exponents close to 2/3.
Given its small scaling corrections and likely tricritical
point between ∆ = 1/2 and ∆ = 1, the EPJQ model
opens doors for future detailed studies on exotic phase
transitions beyond the Landau paradigm.
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Appendix A: Crossing-point analysis

To determine the critical point and the critical ex-
ponents in an unbiased manner, we adopt the crossing-
point analysis applied and tested for 2D Ising and SU(2)
J-Q models in Ref. [31]. Such analysis can be further
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traced back to Fisher’s ”phenomenological renormaliza-
tion”, which was first numerically tested with transfer-
matrix results for the Ising model in Ref. [83]. Ref. [31]
presented systematic procedures for a statistically sound
application of these techniques with Monte Carlo data.
For easy reference we here summarize how we have
adapted the method to the EPJQ model studied in this
paper. For the BH model, due to the much larger compu-
tational cost of the DQMC simulations, we do not have
data for enough system sizes to carry out the analysis in
this way, and we instead applied other scaling methods
in Sec. V.

Considering a generic critical point, with δ = q−qc de-
fined as the distance to the critical point qc—for example,
here q can be the control parameter q = Q/(J +Q) that
we used for the EPJQ model or it could be T − Tc for a
finite-temperature transition. For any observable O, the
standard finite-size scaling form is

O(δ, L) = L−κ/νf(δL1/ν , λL−ω), (A1)

where we, for the sake of simplicity, only consider one
irrelevant field λ and the corresponding subleading expo-
nent ω. At the critical point, one can Taylor expand the
scaling function,

O(δ, L) = L−κ/ν(a0 + a1δL
1/ν + b1L

−ω + · · · ). (A2)

If one now takes two system sizes, e.g., L1 = L and L2 =
rL (r > 1), and trace the crossing points δ∗(L) of curves
O(δ, L1) and O(δ, L2) versus δ, one finds

δ∗(L) =
a0

a1

1− r−κ/ν
r(1−κ)/ν−1

L−1/ν

+
b1
a1

1− r−(κ/ν+ω)

r(1−κ)/ν−1
L−(1/ν+ω). (A3)

Now if the quantity O is asymptotically size-independent
(dimensionless) at the critical point, for example the
Binder cumulant (which we write here with a constant
and factor corresponding to a planar vector order pa-
rameter),

U = 2

(
1− 〈m4

xy〉
2〈m2

xy〉2

)
(A4)

then the corresponding exponent κ = 0, the first term in
Eq. (A3) with O = U vanishes, and we obtain the follow-
ing form for the size-dependent crossing point δ∗(L):

δ∗(L) = q∗c (L)− qc ∝ L−(1/ν+ω), (A5)

hence the shift of the finite-size critical point q∗c (L) is
approaching the asymptotic value qc as L−(1/ν+ω).

In practice, one can interpolate within a set of points
for each system size by a fitted polynomial, e.g., of cu-
bic or quadratic order, and then use these polynomials
to find the crossing points. This is illustrated in Fig 7.
Error bars can be obtained by repeating the fits multi-
ple times to data with Gaussian-distributed noise added.
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q
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U
(q
,L

)

q ∗c

U ∗
c

L=16

L=32

FIG. 7. Example of finite-size crossing points q∗c (L),U∗
c (L) of

the Binder cumulant, here for the EPJQ model with L = 16
and L = 32. The date are here fitted to third-order polynomi-
als. The crossing point and derivatives at the crossing point
can be determined from the fitted polynomials.

The scaling behavior of qc predicted by Eq. (A5) can be
clearly seen in Fig. 2(b) of the main text, from which the
result 1/ν+ω = 4.0(2) for the EPJQ model was obtained.

In addition to obtaining q∗c and the exponent combi-
nation 1/ν + ω from the crossing points of the cumulant
(or, in principle, some other dimensionless quantity), one
can also use the value U∗c of the quantity at q∗c , as well as
the derivatives at q∗c , to acquire ν and ω independently.
We next discuss the derivations underlying these forms.

By inserting δ∗(L) into Eq. (A2), one can obtain the
value of observable at the the finite-size critical point (or,
more precisely, the critical point depending on the two
sizes, L and rL) q∗c (L). It scales as

O∗(L) = L−κ/ν(a+ bL−ω + · · · ). (A6)

Again, for a dimensionless quantity (κ = 0) such as U ,
the deviation of the value at the crossing point from the
value in the thermodynamic limit vanishes with increas-
ing size according to U∗c (L) − Uc ∝ L−ω, an example of
which can be seen in Fig. 2(c) of the main text—in this
case the power-law fit gave the value ω = 2.3(1) of the
subleading exponent.

The last step of the analysis of the single dimensionless
quantity is to determine ν in an independent manner. To
this end, one can expand the quantity U (or any other
dimensionless quantity) close to the critical point,

U(δ, L) = a0 +a1δL
1/ν + b1L

−ω + c1δL
1/ν−ω + · · · (A7)

and take the derivative U ′(δ, L) with respect of δ (in prac-
tice with respect to q);

U ′(δ, L) = a1L
1/ν + c1L

1/ν−ω + · · · . (A8)

Again, we take two system sizes L1 = L and L2 = rL,
and at the crossing point δ∗(L) of the two curves for these
system sizes one has

U ′(δ∗, L) = a1L
1/ν + c1L

1/ν−ω

U ′(δ∗, rL) = a1(rL)1/ν + c1(rL)1/ν−ω. (A9)
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Here we can take the difference of the logarithms of the
two equations and obtain,

ln

(
U ′(δ∗, rL)

U ′(δ∗, L)

)
=

1

ν
ln(r) + dL−ω + · · · , (A10)

or, in other words, one can define a finite-size estimate of
the correlation-length exponent ν∗(L) from the finite-size
crossing point as,

1

ν∗(L)
=

1

ln(r)
ln

(
U ′(δ∗, rL)

U ′(δ, L)

)
. (A11)

It can be seen that Eq. (A11) approaches the thermo-
dynamic limit correlation-length exponent ν at the rate
1/ν∗(L)−1/ν = gL−ω+ · · · . This behavior is seen nicely
in Fig. 2(d), where the extrapolation to infinite size gave
νxyJQ = 0.48(2).

In principle one can also combine the above method
for a dimensionless quantity with some other quantity
A, e.g., an order parameter or a long-distance correla-
tion function. Interpolating the data for two system
sizes, A(L) and A(rL) at the crossing point of the di-
mensionless quantity, one can take the logarithm of the
ratio and analyze it in a manner similar to the slope-
estimate of 1/ν, to yield a series of finite-size estimates
for the power-law governing the size dependence of A.
This method circumvents the need to know the critical-
point value exactly. In practice, since qc converges fast, it
is also appropriate to just use this value and analyze the
size-dependence of the quantity A at this fixed coupling
value q = qc, as we did in the main text.

Appendix B: Fully planar EPJQ model

In the main text we discussed the XYAFM–VBS tran-
sition at a fixed anisotropy parameter ∆ = 1/2 of the
EPJQ model. We here provide some more information
on the dependence on ∆.

In the extreme planar limit ∆→ 1 of Eq. (11) we have
no SzSz J-term and the Hamiltonian is

HJQ = J
∑

〈ij〉
(Sxi S

x
j +Syi S

y
j )+Q

∑

〈ijklmn〉
DijDklDmn. (B1)

We have analyzed SSE-QMC results for this model in the
same way as we did for ∆ = 1/2 in the main text, us-
ing a crossing-point analysis. The results of this analysis
show a distinctively different behavior for ∆ = 1, point-
ing to a first-order transition in this case. Results for the
L-dependent quantities based on the XY Binder cumu-
lant are shown in Fig. 8. As an aside, we mention here
that for the model in Eq. (B1) the off-diagonal spin cor-
relations can be measured as diagonal correlations upon
performing a basis rotation with the z spin components
transformed into the x components, and vice versa. Sim-
ulating the system with SSE-QMC in this rotated basis
speeds up the simulations of this variant of the model
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FIG. 8. Crossing-point analysis of the extreme, ∆ = 1, ver-
sion of the EPJQ model, Eq. (B1). (a) The magnetic Binder
cumulant versus the coupling Q in the neighborhood of the
phase transition. (b) Size dependence of the critical point de-
fined as the crossing point of U vs Q for system sizes L and
2L, with a power-law fit giving Qc = 1.732(2). (c) The cu-
mulant evaluated at the crossing points. Here it is not clear
whether the asymptotic behavior has been reached, and we
refrain from carrying out a fit. (d) The finite-size correla-
tion length. Here as well we do not present any fit, as the
asymptotic behavior is not yet clear.

over those for generic ∆ < 1. We therefore have results
for larger system sizes in this case.

It is clear from Fig. 8 that we can obtain a good es-
timate of the critical point, but the cumulant itself and
the correlation-length exponent do not exhibit the clear-
cut power-law corrections of the type that we saw for
the ∆ = 1/2 model in Sec. IV. The fact that 1/ν∗ is
larger than 3 suggests that the transition may actually



14

0.00 0.02 0.04 0.06 0.08 0.10
1/L

0.00

0.01

0.02

〈 M2 xy
〉

(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
1/L

0.00

0.05

0.10

〈 M2 xy
〉

(b)

FIG. 9. Comparison of the XY magnetization squared of the
∆ = 1/2 and ∆ = 1 EPJQ models at their respective critical
points. In (a) fits indicating a finite order parameter in the
thermodynamic limit are indicated, with the dashed line cor-
responding to a purely linear correction and the solid curve
to a quadratic form. In (b) a second-order fit is shown. The
extrapolated value at L =∞ is 0 to within two error bars of
the parameter obtained from the fit.

be of first order in this case. If so, we would expect the
values to eventually tend exactly to 3, and the data are
consistent with this behavior.

If the transition indeed is of first order, the order pa-
rameter should be non-zero at the transition point, re-
flecting coexistence of the magnetic and non-magnetic
phases. Indeed, as shown in Fig. 9(a), an extrapolation
using a trivial 1/L correction, as expected asymptoti-
cally for a 2D system breaking a continuous symmetry,
indicates a clearly non-zero value in the thermodynamic
limit. The extrapolated value only changes slightly if a
higher-order (1/L2) correction is added (also expected if
the order parameter is non-vanishing). In contrast, as
shown in Fig. 9(b) the data for the ∆ = 1/2 model are
fully consistent with no magnetization in the thermody-
namic limit. Here the polynomial fit is strictly not cor-
rect, since a non-trivial power is expected at the critical
point (which we confirmed in the main paper), but the
extrapolation nevertheless indicates consistency with a
vanishing order parameter at the transition in this case.

These results strongly suggest that there is a tricritical
point separating a continuous and first-order transition
in the EPJQ model somewhere between ∆ = 1/2 and
∆ = 1, which we plan to investigate further in a future
study.
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