2,620 research outputs found

    The linear and nonlinear Jaynes-Cummings model for the multiphoton transition

    Full text link
    With the Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition, and researched the effect of initial state superposition coefficient C1C_{1}, the transition photon number NN, the quantum discord δ\delta and the nonlinear coefficient χ\chi on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, and obtained some results, which should have been used in quantum computing and quantum information.Comment: arXiv admin note: text overlap with arXiv:1404.0821, arXiv:1205.0979 by other author

    catena-Poly[[[triaqua­(4,5-diaza­fluorene-9-one)cadmium]-μ-benzene-1,3-dicarboxyl­ato] dihydrate]

    Get PDF
    In the title compound, {[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2O}n, the CdII atom is seven-coordinated by two N atoms from the phenanthroline-derived 4,5-diaza­fluorene-9-one ligand, two O atoms from one bidentate benzene-1,3-dicarboxyl­ate ligand and three O atoms from the three water mol­ecules in a distorted penta­gonal-bipyramidal arrangement. Moreover, there are two dissociative water mol­ecules in each unit. Neighbouring units inter­act through π–π inter­actions [centroid–centroid distances = 3.325 (3) and 3.358 (4) Å] and O—H⋯O hydrogen-bonding, resulting in a two-dimensional network extending parallel to (001)

    IL-9 Inhibits Viral Replication in Coxsackievirus B3-Induced Myocarditis

    Get PDF
    Myocardial injuries in viral myocarditis (VMC) are caused by viral infection and related autoimmune disorders. Recent studies suggest that IL-9 mediated both antimicrobial immune and autoimmune responses in addition to allergic diseases. However, the role of IL-9 in viral infection and VMC remains controversial and uncertain. In this study, we infected Balb/c mice with Coxsackievirus B3 (CVB3), and found that IL-9 was enriched in the blood and hearts of VMC mice on days 5 and 7 after virus infection. Most of IL-9 was secreted by CD8+ T cells on day 5 and CD4+ T cells on day 7 in the myocardium. Further, IL-9 knockout exacerbated cardiac damage following CVB3 infection, along with a sharp increase in viral replication and IL-17a expression, as well as a decrease in TGF-β. In contrast, repletion of IL-9 in Balb/c mice with CVB infection induced the opposite effect. Studies in vitro further revealed that IL-9 directly inhibited viral replication in cardiomyocytes by reducing coxsackie and adenovirus receptor expression, which might be associated with up-regulation of TGF-β autocrine effect in these cells. However, IL-9 had no direct effect on apoptosis in cardiomyocytes. Our data indicated that IL-9 played a protective role in disease progression by inhibiting CVB3 replication in the early stages of VMC

    Investigation of the Cofiring Process of Raw or Torrefied Bamboo and Masson Pine by Using a Cone Calorimeter

    Get PDF
    Cofiring characteristics of raw or torrefied bamboo and masson pine blends with different blend ratios were investigated by cone calorimetry, and its ash performance from cofiring was also determined by a YX-HRD testing instrument, X-ray fluorescence, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results showed that bamboo and masson pine had the different physicochemical properties. Torrefaction improved fuel performances, resulting in a more stable cofiring process. It also decreased the heat release rate, total heat release, and total suspended particulates of fuels, especially CO2 and CO release. Masson pine ash mainly included CaO, SiO2, Fe2O3, K2O, and Al2O3. Bamboo ash was mainly composed of K2O, SiO2, MgO, and SO3. There were different melting temperatures and trends between different samples. The synergistic reaction of ash components was found during the cofiring process. The surface morphology of blend ash changed with the variation of bamboo or masson pine content
    corecore