10,105 research outputs found

    A new class of (2+1)(2+1)-d topological superconductor with Z8\mathbb{Z}_8 topological classification

    Full text link
    The classification of topological states of matter depends on spatial dimension and symmetry class. For non-interacting topological insulators and superconductors the topological classification is obtained systematically and nontrivial topological insulators are classified by either integer or Z2Z_2. The classification of interacting topological states of matter is much more complicated and only special cases are understood. In this paper we study a new class of topological superconductors in (2+1)(2+1) dimensions which has time-reversal symmetry and a Z2\mathbb{Z}_2 spin conservation symmetry. We demonstrate that the superconductors in this class is classified by Z8\mathbb{Z}_8 when electron interaction is considered, while the classification is Z\mathbb{Z} without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur

    Quantum Spin Hall Insulator State in HgTe Quantum Wells

    Full text link
    Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.Comment: 16 pages, 5 figure

    Nonlocal edge state transport in the quantum spin Hall state

    Full text link
    We present direct experimental evidence for nonlocal transport in HgTe quantum wells in the quantum spin Hall regime, in the absence of any external magnetic field. The data conclusively show that the non-dissipative quantum transport occurs through edge channels, while the contacts lead to equilibration between the counter-propagating spin states at the edge. We show that the experimental data agree quantitatively with the theory of the quantum spin Hall effect.Comment: 13 pages, 4 figure

    Molecular responses and expression analysis of genes in a xerophytic desert shrub Haloxylon ammodendron (Chenopodiaceae) to environmental stresses

    Get PDF
    Haloxylon ammodendron (C.A Mey.) Bunge is a xero-halophytic desert shrub with excellent drought resistance and salt tolerance. To decipher the molecular responses involved in its drought resistance, the cDNA-AFLP (amplified fragment length polymorphism) technique was employed to identify genes expressed differentially in the leaves following drought treatment in the seedlings of H. ammodendron.Eighty-six non-redundant TDFs (transcript-derived fragments) were identified as drought responsive after verified by reverse northern. Of these, 49 TDFs showed significant homology to genes with knownor predicted function; 6 TDFs were homologous to unknown genes, while 31 TDFs did not show any significant matches. 10 TDFs were selected to further validate the cDNA-AFLP expression patterns bythe semi-quantitative RT-PCR. 57% of TDFs corresponding to proteins of known or putative functions are likely to participate in signal transduction, transcription regulation, protein synthesis, senescence,transport, cell wall synthesis, stress and defense response, development and growth, photosynthesis, and so on. Moreover, not many functions of these genes have been reported in plants adaptation to unfavorable conditions. The spatial and temporal expression patterns of the tested genes displayed several distinct patterns in response to osmotic stress, desiccation stress and application of exogenous ABA. The results provided general insights into the molecular adaptation mechanisms involved in this desert shrub’s response to desert conditions

    Seeing the magnetic monopole through the mirror of topological surface states

    Full text link
    Existence of the magnetic monopole is compatible with the fundamental laws of nature, however, this illusive particle has yet to be detected experimentally. In this work, we show that an electric charge near the topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by the image magnetic monopole can be experimentally measured, and the inverse square law of the field dependence can be determined quantitatively. We propose that this effect can be used to experimentally realize a gas of quantum particles carrying fractional statistics, consisting of the bound states of the electric charge and the image magnetic monopole charge.Comment: 5 pages, 4 figure

    Constraints on Cosmological Models and Reconstructing the Acceleration History of the Universe with Gamma-Ray Burst Distance Indicators

    Full text link
    Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia data points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the Λ\LambdaCDM model is consistent with the joint data in the 1-σ\sigma confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the Λ\LambdaCDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the Λ\LambdaCDM model and seem to favor oscillatory cosmology models; however further investigations are needed to better understand the situation.Comment: 14 pages, 9 figures, 2 tables; v3: the revised version, fig. 6 and some discussions added, accepted for for publication in Phys. Rev. D; v4: the published version (Phys. Rev. D 81, 083518, 2010

    Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds

    Full text link
    Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and experimentally realized in a quantum wells based on binary semiconductor HgTe[1-3]. QSH state and topological insulators are the new states of quantum matter interesting both for fundamental condensed matter physics and material science[1-11]. Many of Heusler compounds with C1b structure are ternary semiconductors which are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the band gap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by lattice parameter) and the magnitude of spin-orbit coupling (by the atomic charge). Based on the first-principle calculations we demonstrate that around fifty Heusler compounds show the band inversion similar to HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantum well structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare earth element Ln which can realize additional properties ranging from superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors.Comment: 20 pages, 5 figure

    Spin 3/2 dimer model

    Full text link
    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter
    • …
    corecore