25,871 research outputs found

    Opportunities for weed manipulation using GMHT row crops

    Get PDF
    The herbicides and cultivation systems available in most non-GM crops allow farmers little flexibility as to when they control weeds. However, glyphosate and glufosinate-ammonium, as used in GM herbicide tolerant crops, offer the opportunity to control large weeds and weed control can be timed according to the agronomic and environmental aims of the user. This paper will use sugar beet as a model crop and report results where different approaches to weed control have been used and discuss their relevance in the wider agricultural and environmental contextNon peer reviewe

    An edge index for the Quantum Spin-Hall effect

    Full text link
    Quantum Spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the Quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take same values as the Spin-Chern number previously introduced in the literature. The result gives an effective tool for the investigation of the edge channels' structure in Quantum Spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge.Comment: 4 pages, 3 figure

    Real-time motion data annotation via action string

    Get PDF
    Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method

    Electromagnetically induced transparency in an inverted Y-type four-level system

    Full text link
    The interaction of a weak probe laser with an inverted-Y type four-level atomic system driven by two additional coherent fields is investigated theoretically. Under the influence of the coherent coupling fields, the steady-state linear susceptibility of the probe laser shows that the system can have single or double electromagnetically induced transparency windows depending on the amplitude and the detuning of the coupling lasers. The corresponding index of refraction associated with the group velocity of the probe laser can be controlled at both transparency windows by the coupling fields. The propagation of the probe field can be switched from superluminal near the resonance to subluminal on resonance within the single transparency window when two coupling lasers are on resonance. This provides a potential application in quantum information processing. We propose an atomic 87Rb^{87}Rb system for experimental observation

    Double-Layer Bose-Einstein Condensates with Large Number of Vortices

    Full text link
    In this paper we systematically study the double layer vortex lattice model, which is proposed to illustrate the interplay between the physics of a fast rotating Bose-Einstein condensate and the macroscopic quantum tunnelling. The phase diagram of the system is obtained. We find that under certain conditions the system will exhibit one novel phase transition, which is consequence of competition between inter-layer coherent hopping and inter-layer density-density interaction. In one phase the vortices in one layer coincide with those in the other layer. And in another phase two sets of vortex lattices are staggered, and as a result the quantum tunnelling between two layers is suppressed. To obtain the phase diagram we use two kinds of mean field theories which are quantum Hall mean field and Thomas-Fermi mean field. Two different criteria for the transition taking place are obtained respectively, which reveals some fundamental differences between these two mean field states. The sliding mode excitation is also discussed.Comment: 12 pages, 8 figure

    Cu/Ag EAM Potential Optimized for Heteroepitaxial Diffusion from ab initio Data

    Full text link
    A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(111), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM potential and first modify the Cu-Ag pair potential to match the FCC/HCP site energy difference then include Cu-Cu pair potential optimization for the entire database. The optimized EAM potential reproduce DFT monomer and dimer relative energies and geometries correctly. In trimer calculations, the potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are both lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that the optimized Cu-Ag EAM can be applied in the study of larger Cu islands on Ag(111).Comment: 15 pages, 7 figure
    corecore