2,822 research outputs found

    Deep Interest Evolution Network for Click-Through Rate Prediction

    Full text link
    Click-through rate~(CTR) prediction, whose goal is to estimate the probability of the user clicks, has become one of the core tasks in advertising systems. For CTR prediction model, it is necessary to capture the latent user interest behind the user behavior data. Besides, considering the changing of the external environment and the internal cognition, user interest evolves over time dynamically. There are several CTR prediction methods for interest modeling, while most of them regard the representation of behavior as the interest directly, and lack specially modeling for latent interest behind the concrete behavior. Moreover, few work consider the changing trend of interest. In this paper, we propose a novel model, named Deep Interest Evolution Network~(DIEN), for CTR prediction. Specifically, we design interest extractor layer to capture temporal interests from history behavior sequence. At this layer, we introduce an auxiliary loss to supervise interest extracting at each step. As user interests are diverse, especially in the e-commerce system, we propose interest evolving layer to capture interest evolving process that is relative to the target item. At interest evolving layer, attention mechanism is embedded into the sequential structure novelly, and the effects of relative interests are strengthened during interest evolution. In the experiments on both public and industrial datasets, DIEN significantly outperforms the state-of-the-art solutions. Notably, DIEN has been deployed in the display advertisement system of Taobao, and obtained 20.7\% improvement on CTR.Comment: 9 pages. Accepted by AAAI 201

    Sequence Dependent Repair of 1,N6-Ethenoadenine by DNA Repair Enzymes ALKBH2, ALKBH3, and AlkB

    Get PDF
    Mutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,N6-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes. Specifically, we investigated εA repair across 16 possible sequence contexts (5′/3′ flanking base to εA varied as G/A/T/C). The results revealed that repair efficiency is altered according to sequence, enzyme, and strand context (ss- versus ds-DNA). The methods can be used to study other aspects of mutational spectra or other pathways of repair

    Off-policy Evaluation in Doubly Inhomogeneous Environments

    Full text link
    This work aims to study off-policy evaluation (OPE) under scenarios where two key reinforcement learning (RL) assumptions -- temporal stationarity and individual homogeneity are both violated. To handle the ``double inhomogeneities", we propose a class of latent factor models for the reward and observation transition functions, under which we develop a general OPE framework that consists of both model-based and model-free approaches. To our knowledge, this is the first paper that develops statistically sound OPE methods in offline RL with double inhomogeneities. It contributes to a deeper understanding of OPE in environments, where standard RL assumptions are not met, and provides several practical approaches in these settings. We establish the theoretical properties of the proposed value estimators and empirically show that our approach outperforms competing methods that ignore either temporal nonstationarity or individual heterogeneity. Finally, we illustrate our method on a data set from the Medical Information Mart for Intensive Care

    Bulk flow properties of wheat

    Get PDF
    Master of ScienceDepartment of Grain Science and IndustryKingsly AmbroseConsistent and reliable flow of bulk wheat from hoppers and silos is very significant in wheat handling and processing. Bulk wheat flow challenges such as inconsistent flow, arching, etc., are common during handling. The irregular size and non-uniformity of physical properties, the presence of impurities affects the flow behavior during discharge. Chaff and insects infested kernels are the two most common impurities present in wheat. In this research, the effect of these two impurities on their physical and flow properties of wheat were studied. Physical and flow indicators, such as bulk, tapped, particle densities, angle of repose, Hausner’s ratio, Carr index, and porosity measures the flowability of uncompacted bulk solids. Meanwhile, flow properties tested by shear testing principle based on Jenike’s method, simulated bulk wheat under pressure in bins/hoppers. The dynamic properties tested quantify the energy required to flow, compressibility and permeability at dynamic handling situations. Due to the presence of impurities and moisture content differences, bulk density and angle of repose of wheat varied from 801.54kg/m3 to 718.36kg/m3, and 23.6° to 38.4°, respectively. Angle of internal friction and wall friction angle that reflect interaction between particles and particle with bins/hopper walls, ranged from 23.95° to 43.13° and 15.46° to 20.33°, respectively. In addition to instrumental flow property evaluation, the flow profile, discharge rate, and particle velocity during hopper flow of bulk wheat was studied using Particle Image Velocimetry method. Mass flow and funnel flow hopper dimensions were used for this flow profile analysis. The discharge rate decreased from 1.67 to 1.12 kg/s for mass flow and 1.42 to 0.86 kg/s for funnel flow when the chaff in bulk wheat increased from 0% to 7.5% (weight basis). Analysis of the active flow zone indicated that bulk wheat without chaff had a uniform flow compared to wheat with chaff in the bulk. The findings from this study will be useful for design of hopper bottom bins and handling equipment based on the wheat quality and percent moisture content

    On Ï„q\tau_q-weak global dimensions of commuative rings

    Full text link
    In this paper, the Ï„q\tau_q-weak global dimension Ï„q\tau_q-\cwd(R)(R) of a commutative ring RR is introduced. Rings with Ï„q\tau_q-weak global dimension equal to 00 are studied in terms of homologies, direct products, polynomial extensions and amalgamations. Besides, we investigate the Ï„q\tau_q-weak global dimensions of polynomial rings.Comment: arXiv admin note: text overlap with arXiv:2111.03417, arXiv:2302.0456

    The variability of optical \feii emission in PG QSO 1700+518

    Full text link
    It is found that \feii emission contributes significantly to the optical and ultraviolet spectra of most active galactic nuclei. The origin of the optical/UV \feii emission is still a question open to debate. The variability of \feii would give clues to this origin. Using 7.5 yr spectroscopic monitoring data of one Palomer-Green (PG) quasi-stellar object (QSO), PG 1700+518, with strong optical \feii emission, we obtain the light curves of the continuum \lv, \feii, the broad component of \hb, and the narrow component of \hb by the spectral decomposition. Through the interpolation cross-correlation method, we calculate the time lags for light curves of \feii, the total \hb, the broad component of \hb, and the narrow component of \hb with respect to the continuum light curve. We find that the \feii time lag in PG1700+518 is 209−147+100209^{+100}_{-147} days, and the \hb time lag cannot be determined. Assuming that \feii and \hb emission regions follow the virial relation between the time lag and the FWHM for the \hb and \feii emission lines, we can derive that the \hb time lag is 148−104+72148^{+72}_{-104} days. The \hb time lag calculated from the empirical luminosity--size relation is 222 days, which is consistent with our measured \feii time lag. Considering the optical \feii contribution, PG 1700+518 shares the same characteristic on the spectral slope variability as other 15 PG QSOs in our previous work, i.e., harder spectrum during brighter phase.Comment: 6 apges, ApJ, in pres
    • …
    corecore