70 research outputs found

    Constrained Clustering Based on the Link Structure of a Directed Graph

    Get PDF
    In many segmentation applications, data objects are often clustered based purely on attribute-level similarities. This practice has neglected the useful information that resides in the link structure among data objects and the valuable expert domain knowledge about the desirable cluster assignment. Link structure can carry worthy information about the similarity between data objects (e.g. citation), and we should also incorporate the existing domain information on preferred outcome when segmenting data. In this paper, we investigate the segmentation problem combining these three sources of information, which has not been addressed in the existing literature. We propose a segmentation method for directed graphs that incorporates the attribute values, link structure and expert domain information (represented as constraints). The proposed method combines these three types of information to achieve good quality segmentation on data which can be represented as a directed graph. We conducted comprehensive experiments to evaluate various aspects of our approach and demonstrate the effectiveness of our method

    Micro-analysis of lateral ballast resistance of seismic characteristics

    Get PDF
    The ballast bed becomes loose in the event of earthquake, as to track lateral resistance ability, even if no visible defects are found in on-site inspections. The behavior of ballast materials subjected to earthquake vibrations is dependent on a variety of factors, including amplitude, frequency, as well as the particle properties, for example, ballast degradation. Motivation for the investigation reported here is based on lateral ballast resistance after vibration. In this research, the discrete element method (DEM) was applied to simulate the seismic characteristics of ballast bed, where the irregular ballast particle was constructed; the interlock of ballast can be well modeled. The nonlinear contact force model with Mohr-Coulomb is adopted to model the clumped particles. A full-size track on a shaking table DEM model was developed, the sleeper lateral ballast resistance force index, and slope ballast particle displacements were analyzed under different vibration accelerations, vibration duration and vibration frequencies, compared with existed same size tests. The purpose of such modeling is micro-analysis of ballasted tracks under seismic effects. DEM test results clarified that sleeper lateral resistance was governed by seismic response. The lateral ballast resistance decrease with vibration accelerations, vibration duration and vibration frequencies, agreed with the tests results

    Micro-analysis of hanging sleeper dynamic interactions with ballast bed

    Get PDF
    The hanging sleeper under train dynamic loads result in discrete contact and breakage of ballast particles, and accelerate ballast bed degradation and deformation. A sleeper-ballast dynamic interaction model was established to analyze the effects of hanging sleeper due to the sleeper dynamic response. In this research, the Discrete Element Method (DEM) was applied to simulate the hanging sleeper dynamic characteristics of ballast bed, where the irregular ballast particle was constructed by clusters, and the ballast particle breakage under dynamic cyclic loads was investigated. The nonlinear contact force model of Mohr-Coulomb was adopted to model the cluster particles. The ballast breakage function and dynamic simulation were employed, with local damping method. Numerical results indicated that hanging sleeper altered the contact force distribution state, the hanging sleepers would incur centralized contact force under sleepers, more ballast particles breakage, and ballast lateral resistance reduction varied with hanging sleeper situations. Some ballasted track improvements should be considered in practice, such as increase thickness of ballast bed, improve ballast compaction, and reduce vibration tamping produced voids

    Histocompatibility and Long-Term Results of the Follicular Unit-Like Wigs after Xenogeneic Hair Transplantation: An Experimental Study in Rabbits

    Get PDF
    Objective. This study was designed to observe the histocompatibility and long-term results of wigs after xenogeneic hair transplantation and to explore the possibility of industrial products in clinical application. Methods. The human hair and melted medical polypropylene were preceded into the follicular unit-like wigs according to the natural follicular unit by extrusion molding. 12 New Zealand rabbits were used as experimental animals for wigs transplantation. The histocompatibility of polypropylene and human hair was observed by H&E staining and scanning electron microscope. The loss rate of wigs was calculated to evaluate the long-term result after transplantation. Results. Mild infiltration by inflammatory cells around the polypropylene and human hair were seen during the early period after transplantation, accompanied with local epithelial cell proliferation. The inflammatory cells were decreased after 30 days with increased collagen fibers around the polypropylene and human hair. The follicular unit-like wigs maintained a good histocompatibility in one year. The degradation of hair was not significant. The loss rate of wigs was 4.1 Ā± 4.0% in one year. The appearance of hair was satisfactory. Conclusions. We successfully developed a follicular unit-like wigs, which were made of xenogeneic human hair with medical polypropylene, showing a good histocompatibility, a low loss rate, and satisfactory appearance in a year after transplantation. The follicular unit-like wigs may have prospective industrial products in clinical application
    • ā€¦
    corecore