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Abstract. The ballast bed becomes loose in the event of earthquake, as to track lateral resistance 

ability, even if no visible defects are found in on-site inspections. The behavior of ballast materials 

subjected to earthquake vibrations is dependent on a variety of factors, including amplitude, 

frequency, as well as the particle properties, for example, ballast degradation. Motivation for the 

investigation reported here is based on lateral ballast resistance after vibration. In this research, 

the discrete element method (DEM) was applied to simulate the seismic characteristics of ballast 

bed, where the irregular ballast particle was constructed; the interlock of ballast can be well 

modeled. The nonlinear contact force model with Mohr-Coulomb is adopted to model the clumped 

particles. A full-size track on a shaking table DEM model was developed, the sleeper lateral ballast 

resistance force index, and slope ballast particle displacements were analyzed under different 

vibration accelerations, vibration duration and vibration frequencies, compared with existed same 

size tests. The purpose of such modeling is micro-analysis of ballasted tracks under seismic 

effects. DEM test results clarified that sleeper lateral resistance was governed by seismic response. 

The lateral ballast resistance decrease with vibration accelerations, vibration duration and 

vibration frequencies, agreed with the tests results.  

Keywords: earthquake, ballast, DEM, lateral resistance, vibration. 

1. Introduction 

The reported experiences of past earthquakes have interpreted the deviation of track 

geometrical parameters from the standard position, which has disrupted the track operation [1]. 

For example, several railway lines were completely disrupted in the great Wenchuan earthquake 

with the magnitude of 8.0, which occurred in 2008. It was considered so far that lateral shift of the 

track was happened during earthquake due to the reduction of the lateral resistance, where the 

axial force of the rail was not hugely increased. The ballasted track was damaged in the earthquake, 

but the deformation of the ballasted bed was not obviously observed. Some researchers presented 

an explanation that it was caused by the decrease of the lateral resistance of the ballast, during and 

after the earthquake [2]. 

The more common problem encountered is mostly because the lateral buckling of the track 

after earthquake. Lateral buckling results from lateral resistance reduction. The common past 

method was to use FEM or FEM related method, such as FEM-BFM to evaluate the structure, for 

example, the FE model including the track super and substructure could be developed for seismic 

analysis of railway track. In the developed model, the beam elements were used to define rails and 

sleepers as components of track superstructures, and then a series of lumped masses with springs 

and dashpots were considered for modeling the ballast, sub-ballast, and subgrade as track 

substructure components. In order to validate the FE model, the results of seismic numerical 

analysis were compared with the outputs of a shaking table test [3]. The above method could not 

microscopically to investigate the reduction mechanism of the lateral resistance force. In this paper, 

the ballast discontinuous element-based method such as the discrete element method (DEM) has 

proved to be powerful tools to realistic model granular materials interaction with sleeper. The 

advantage of using DEM-based models is that assemblies of discrete ballast particles are able to 
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capture the complicated behavior of actual materials with relatively simple assumptions and a 

small number of parameters at the micro-scale level [4-6]. The present work extends the use of 

DEM-based models to analyze vibration and propagation granular while accounting for the true 

nonlinear behaviors, where the irregular ballast particle was constructed, the interlock of ballast 

can be well modeled. The nonlinear contact force model with Mohr-Coulomb is adapted to model 

the clumped particles. Dynamic response of ballast-sleeper system under sinusoidal base 

excitation is studied, the lateral ballast resistance force is quoted as index. The results of DEM 

simulations were compared to those of the equivalent ballast-sleeper vibration table tests. 

2. Ballasted track model 

2.1. Vibration test 

A large-scale shaking table used to reproduce the earthquakes was developed to investigate 

ballasted track illustrated in Fig. 1 [7]. The performance of the tester is ±60 mm variable 

displacement, 3G maximum acceleration and 50 Hz maximum vibration frequency. The track 

length of the test sample is 4.5 m. And eight sleepers set on 200 mm thick waste ballast well 

compacted. Then applied for a fixed time since wave combined with the maximum acceleration 

and frequency set in the test conditions. At that time, response acceleration and displacement of 

sleepers and ballast were measured. Before and after the vibration, three sleepers were measured 

lateral displacement by applying a horizontal load to each of those sleepers in a direction lateral 

to the track. The minimum applied load at which lateral displacement reached 2 mm was 

considered the lateral ballast resistance force. 

 
Fig. 1. Test model (after Kumakura T., 2010) 

2.2. DEM model 

As a method of continuum mechanics, the FEM cannot well represent the large deformation 

of discontinuities of granular material, which is an important factor to response seismic vibration. 

In recent years, the DEM (Distinct Element Method) attracts more and more attention, due to its 

capability in simulating large deformations like sliding and separation of discontinuities [8-9] as 

well as the non-linear dynamic calculation [10]. DEM is one of the most popular discrete 

approaches which describe material behaviors directly from particle motions and inter-particle 

forces transition; it becomes a powerful tool to study the behavior of granular materials by taking 

into account the interactions among constituents and providing deeper understanding of the 

granular system at microscopic level. The discrete element method can be computationally 

intensive, which limits either the length of a simulation or the number of particles. The dynamic 

behavior is represented numerically by a time stepping algorithm in which it is assumed that the 
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velocities and accelerations are constant within each time step. The method is the same as a finite-

difference algorithm. The method has been used successfully to model ballast material 

characteristic both for monotonic and cyclic loadings [11-12]. The DEM simulations of vibration 

across normally-distributed granular have been carried out by Cai [13] and Zhao [14], and those 

simulation results, including the reflection and transmission coefficients and the influence of 

particle stiffness on wave propagation, agreed well with the theoretical values proposed by 

Pyrak-Nolte [15] and Schoenberg [16], verifying validity and accuracy of DEM in seismic 

simulations. Wave propagation through an assembly of discrete bodies is, in general, dispersive 

[17], and the related vibration and propagation could be analyzed and investigated by DEM 

[18-23], so the DEM model is developed as following.  

A section of sleeper-ballast track was built to conduct the lateral ballast resistance test to 

compare with the test on tracks, as Fig. 2 illustrated. The dimensions of the sleeper-ballast were 

4500 mm long, 1000 mm wide and 300 mm deep. The walls were constructed according to the 

geometry of the high speed ballast bed, where shoulder ballast was included. The sleeper were 

made of walls, to act as the interaction with ballast, such as base wall, side walls and end wall, 

where the sum of the lateral direction equal to the lateral ballast resistance. The radius multiply 

method was used to generate the ballast-track model. Smaller clumps were generated within the 

model and then expanded to a final diameter according to the ballast specifications. The ballast 

assembly was well compacted by exerting on external forces to the sleeper surface, precisely sank 

to the ballast with sleeper base to the bottom wall distance was 30 cm. The ballast assembly was 

cycled to equilibrium using the SOLVE command, which limits the ratio of mean unbalanced 

force to mean contact force, or the ratio of maximum unbalanced force to maximum contact force 

to a default value of 0.01 [17]. The sleeper is laterally moved with constant value within 

quasi-static range, the lateral resistance values were recorded separately. In total, the ballast bed 

model set up was made up of 4 steps, randomly assembly, radius multiply, compaction and shear 

displacement.  

 
Fig. 2. Ballast-sleeper track DEM model 

As ballast particle shape is of importance for ballast tests and DEM simulations, it is need to 

present a more quantitatively reliable model still remained as most of the natural shapes of ballast 

particles are irregular and angular. The concept of an agglomerate where spheres are bonded 

together to create complex shapes and simultaneously keep the contact detection and force 

calculation easy emerged. This paper reproduced a procedure used to model ballast particle shape 

using many overlapping balls of different sizes to form complex clumps resembling real ballast 

particles [5]. A clump in the model is made of 19.4 balls in average to simulate the interlock. The 

Fig. 3 presents several typical ballast particles formed by clump of balls. 

It is a fact that we use the elastic spring and plastic dumper to present the connection of basic 

element balls in PFC3D. The spring represents the elastic of the ball, while the dumper represents 

the plastic of the ball. At the same time, we apply a sliding block with friction to show the friction 

between balls. The mechanic relationship between balls is shown in Figure 4. We assume that 

there exists a spring with normal elastic coefficient 𝑘𝑛  and tangential elastic coefficient 𝑘𝑠 , a 

dumper with normal dump coefficient 𝜂𝑛 and tangential dump coefficient 𝜂𝑠 and a sliding block 

with friction coefficient 𝜇. 
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Fig. 3. Typical irregular clumps 

 
Fig. 4. Mechanic connection between balls in PFC3D 

In the paper, the clump is made up of many balls. It is important to point out that the clump is 

regarded a rigid body, meaning that there is no force between the balls consisting of a clump. 

However, the connection of clumps is through balls, and the balls which are not included in the 

same clump exist force when they contact. The advantage of applying such kind of clump to model 

ballast is that clump can present the character of multi-contact between real ballasts. If we use the 

basic element ball in PFC3D to model ballast, it is obviously that ball has fewer contact points 

than clump. So it can not represent the complex connection between ballasts. 
Mohr-Coulomb contact law was used in the simulations, and based on the ballast DEM 

simulations [4], the contact parameters are listed on Table 1. For damping, when a dynamic 

simulation of compact assemblies is required, the local damping coefficient should be set to a low 

value appropriate to energy dissipation of dynamic waves [17]. It should be noted, for the 

earthquake vibration response, it is a dynamic simulation, while for the later part, lateral ballast 

resistance, which is a slowly sleeper pull-out test belongs to equilibrium and to conduct quasi-

static deformation simulations, and default value is 0.7. 

Table 1. DEM parameters 

 Ballast Wall 

Normal / shear stiffness 
5e8 N/m 1e9 N/m 

5e8 N/m 1e9 N/m 

Particle density  2600 kg/m3 

Contact friction 0.5 

Damping  0.157 / 0.7 

A function generator was used to deliver a sinusoidal signal of adjustable frequency and 

amplitude to a power amplifier, and then transmitted as the input signal to the ballast bed. Then 

the dynamic response of the ballast bed lateral resistance tests were carried out, resistance values 

contrast with sleeper displacements were recorded. A function was programmed to simulate the 
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train cyclic loading using the following sinusoidal expression: 

𝐹(𝑡) = 𝐴(1 − 𝑐𝑜𝑠 2𝜋𝑓𝑡), (1) 

where 𝐴 is the half-amplitude, 𝑓 is the frequency. 

After the seismic vibration, the lateral ballast resistance DEM tests were carried out. We 

measured lateral displacement by applying a horizontal load to each of those sleepers in a direction 

lateral to the track. The minimum applied load at which lateral displacement reached 2 mm was 

considered the lateral ballast resistance force. As discussed above, the simulations within 

quasi-static zone. 

3. Results and discussion 

In the following, a fixed sine wave combined with maximum acceleration and frequency set 

in test conditions were applied. The lateral ballast resistance properties in association with 

vibration frequency and amplitude, duration, ballast particle friction were presented. The data 

represented dynamic condition computation, the system is not allowed to relax to a static state. In 

a physical experiment, this would be leading to taking instantaneous measurements (if possible) 

when the particles is being vibrated rather than when the shaking device is switched off. 

3.1.  Earthquake effects 

Fig. 5 illustrated the shape of the load- deflection curve obtained from the lateral ballast 

resistance tests, under seismic vibration frequency 5 Hz, 0.5 g amplitude, and duration time is 1 s, 

with contact friction of particles is 0.5. It can be seen from this figure that the DEM results agreed 

well with the experiments, and the DEM model presents the typical ballast lateral resistance 

characteristics. It should be noted that the DEM curve shows the fluctuate movements, indicating 

the ballast particle slip and slide. It clearly noted that the resistance force hugely reduced after 

earthquake, the former granular material well contact with sleeper bottom was altered, indicated 

that granular particles slip and relative displacements were observed between sleeper and ballast 

particles during earthquake. 

 
Fig. 5. Lateral ballast resistance (before and after earthquake)  

Fig. 6 illustrates the transportation of lateral seismic wave in ballast bed under earthquake. The 

position of ballasts changed and relocated under lateral seismic load, which results in loose contact 

between ballast and variation of the force chain. The contact force chain variation was illustrated 
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by Fig. 7 and Table 2. Results show that the force chain variation was altered after earthquake, the 

maximum and average contact force was reduced, indicated that the well compacted ballast bed 

become loose. Shoulder ballast contact force chain was changed as shown by the lateral resistance 

tests, as shoulder ballast is vital for track stability; the force chain alteration is of importance after 

seismic response. 

 
Fig. 6. Transportation of lateral seismic wave in ballast bed under earthquake 

 
a) Contact force before earthquake  

 
b) Lateral resistance before earthquake 

 
c) Contact force after earthquake 

 
d) Lateral resistance after earthquake 
Fig. 7. Contact force chain variation 
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Table 2. Contact force during sleeper displacements 

Sleeper displacement 

(mm) 

Before earthquake (N) After earthquake (N) 

maximum average maximum average 

1 654.4 13.5 429.8 10.1 

2 696.1 14.1 441.8 10.3 

3 715.1 14.5 460.5 10.4 

4 785.3 14.7 475.6 10.4 

5 870.4 14.8 512.6 10.5 

6 815.6 15.1 535.3 10.5 

7 811 15.5 575.3 10.7 

8 992.9 15.7 603.9 10.9 

9 955 15.8 673.6 11.2 

10 1010 16.1 785.3 11.4 

At the same time, response acceleration and displacement ballast were measured. The ballast 

acceleration located under sleeper middle 15 cm was illustrated in Fig. 8. Results showed that the 

wave shape of the response acceleration was similar to that of input acceleration. 

 
Fig. 8. Acceleration under sleeper 0.15 m (5 Hz, 0.5 g, 1 s input) 

The particle displacements under the sleeper during the seismic vibration were recorded as 

Fig. 9(a). The two neighboring ballast particles relative displacements for 𝑦-direction as Fig. 9(b). 

The coordinates are as following, with 𝑥, 𝑦, 𝑧 0.1 0.24 0.34 and 0.1 0.26 0.34. 

 
a) Particle displacement under the sleeper 

 
b) Relative displacement of two particles 

Fig. 9. Particle displacements under the sleeper 
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3.2. Vibration frequency 

The assessment of the frequency response is a key issue of the present analytical work to 

establish the ballast bed seismic effects for current seismic design rules. Results presented by 

Fig. 10 and Table 3 indicated that the lateral resistance reduced with earthquake acceleration 

increase, higher frequency with the same time duration produce more ballast particles 

re-displacements, thus more disruption for the compacted initial ballast bed. Results signified that 

higher frequency results in more reduction for lateral resistance [24]. For example, after 10 Hz, 

1 s earthquake duration, more than 50 % reduction of lateral resistance force was observed, the 

existed value is very dangerous for track stability. It should be noted that, within the low frequency 

zone, the vibration frequency effects become more dominant. 

 
Fig. 10. Influence of vibration frequency  

Table 3. Variation with frequency 

Frequency Lateral resistance (kN) Loss (compared with initial 14.584 kN) 

1 Hz 10.803 25.9 % 

5 Hz 9.075 37.8 % 

10 Hz 7.066 51.5 % 

3.3. Vibration acceleration 

The sensitivity of vibration acceleration was studied using DEM – see Fig. 11 and Table 4. 

The Fig. 11 illustrated the resistance force reduced with vibration acceleration, under the condition 

of disturbance of dynamic force, the granular becomes loose, and the shear strength will decrease 

remarkably [25-27]. Compared with the amplitude of frequency, the influence of high acceleration 

on the dynamic shear strength is also significant. This is the results of low frequency, a little 

contrast for higher frequency vibration. 

3.4. Vibration duration 

We studied a system of particles with vibration frequency 5 Hz, and magnitude 0.5 g, and 

friction coefficients 0.5 while the duration time 1 s, 5 s, 10 s respectively. The results were shown 

in Fig. 12 and Table 5. Results indicated that the lateral resistance reduced with earthquake 

duration increase, more time duration with the same frequency and amplitude involved higher 
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energy input, thus more disruption for the compacted initial ballast bed. Results signified that time 

duration are a dominant factor for the lateral resistance, for example, after 5 s earthquake duration, 

near 60 % reduction of lateral resistance force was observed, which is critical for track stability. 

 
Fig. 11. Influence of vibration amplitude  

Table 4.Variation with amplitude 

Earthquake amplitude Lateral resistance (kN) Loss (compared with initial 14.584 kN) 

0.1 g 10.118 30.6 % 

0.5 g 9.075 37.8 % 

1.0 g 6.790 53.4 % 

 
Fig. 12. Influence of vibration duration  

Table 5.Variation with time 

Duration Lateral resistance (kN) Loss (before earthquake 14.584 kN) 

1 s 9.075 37.8 % 

5 s 6.208 57.4 % 

10 s 4.653 68.1 % 
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3.5. Contact coefficient  

The ballast particle friction is an important factor for lateral resistance of sleeper, as well as 

the influences the behavior of the vibration. Evidence of this was seen in the results summarized 

in Fig. 13 and Table 6, which depicted the variation of lateral resistance versus friction coefficient, 

before and after the earthquake vibration. In order to assess the situation after the system is 

vibrated, the friction coefficient is varied (0.4, 0.5, 0.6), for amplitudes 0.5 g and duration 1 s, and 

frequency 5 Hz. Results indicated that for all kinds of ballast particle surface state, after the 

vibration, over 30 % loss in lateral resistance. The angle of the internal friction (contact  

coefficient) is the angle of static internal friction when contact plane between the granular does 

not slip under the action of dynamic, but when the vibration is exerted on the granular assembly, 

the angle of internal friction will change [9], thus more particle re-displacements were observed 

during the vibration, hence later loss in lateral resistance. Further, for the smoother or less contact 

friction ballast particles, the lateral resistance reduction result in track stability problem, due to 

the existed value is below the safety critical standards [28-30]. 

 
Fig. 13. Influence of vibration amplitude  

Table 6.Variation with contact friction 

Contact friction Before earthquake (kN) After earthquake (kN) Loss 

0.4 9.375 6.286 32.9 % 

0.5 14.584 9.075 37.8 % 

0.6 20.122 11.831 41.2 % 

4. Conclusion 

DEM has been used to examine the characteristics of railway ballast behavior under vertically 

vibrated beds. The investigated lateral resistance features varied with frequency, amplitude, and 

duration and contact friction. Vibration amplitude were found to have significant influence on the 

lateral resistance, in low frequency zone, lateral ballast resistance was observed to decrease with 

increasing frequency index, vibration duration. For the smoother or less contact friction ballast 

particles, the lateral resistance reduction result in track stability problem, due to the existed value 

is below the safety critical standards, it is necessary to conduct tests or stabilization work on ballast 
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bed after seismic vibration before the operation of train. 

In future, characterizing the dynamic behavior of ballast is one of the great challenges in the 

mechanics of track engineering. Methods for evaluating the mechanical properties of ballast 

granular have applications in track design and maintenance, with aim to consider the track 

properties, a coupled Discrete Element Method-Finite Element Method (DEM-FEM) code could 

be developed and implemented for analyzing the behavior of ballast granular layer under track, an 

elastic beam under deforming (quasi-static) or vibrating (train dynamic) of the track beam. 
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