8,515 research outputs found

    Mutual Chern-Simons Theory of Spontaneous Vortex Phase

    Full text link
    We apply the mutual Chern-Simons effective theory (Phys. Rev. B 71, 235102) of the doped Mott insulator to the study of the so-called spontaneous vortex phase in the low-temperature pseudogap region, which is characterized by strong unconventional superconducting fluctuations. An effective description for the spontaneous vortex phase is derived from the general mutual Chern-Simons Lagrangian, based on which the physical properties including the diamagnetism, spin paramagnetism, magneto-resistance, and the Nernst coefficient, have been quantitatively calculated. The phase boundaries of the spontaneous vortex phase which sits between the onset temperature TvT_{v} and the superconducting transition temperature TcT_{c}, are also determined within the same framework. The results are consistent with the experimental measurements of the cuprates.Comment: 12 pages, 8 figure

    Lower Pseudogap Phase: A Spin/Vortex Liquid State

    Full text link
    The pseudogap phase is considered as a new state of matter in the phase string model of the doped Mott insulator, which is composed of two distinct regimes known as upper and lower pseudogap phases, respectively. The former corresponds to the formation of spin singlet pairing and the latter is characterized by the formation of the Cooper pair amplitude and described by a generalized Gingzburg-Landau theory. Elementary excitation in this phase is a charge-neutral object carrying spin-1/2 and locking with a supercurrent vortex, known as spinon-vortex composite. Here thermally excited spinon-vortices destroy the phase coherence and are responsible for nontrivial Nernst effect and diamagnetism. The transport entropy and core energy associated with a spinon-vortex are determined by the spin degrees of freedom. Such a spontaneous vortex liquid phase can be also considered as a spin liquid with a finite correlation length and gapped S=1/2 excitations, where a resonancelike non-propagating spin mode emerges at the antiferromagnetic wavevector with a doping-dependent characteristic energy. A quantitative phase diagram in the parameter space of doping, temperature, and magnetic field is determined. Comparisons with experiments are also made.Comment: 22 pages, 12 figure

    Charge modulation as fingerprints of phase-string triggered interference

    Get PDF
    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high TcT_c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock type mean field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t−Jt-J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.Comment: 14 pages, 10 figures. Comments on a followup paper by S. R. White, D. J. Scalapino, and S. A. Kivelson (arXiv:1502.04403) adde
    • …
    corecore