250 research outputs found

    Changes of signal level detection in a resonant microwave cavity with varying concentrations of glucose

    Get PDF
    Diabetes is the body’s inability to control blood glucose levels and diabetes is a chronic disease, which is a major threat to public health. Traditionally, the measurement of glucose was achieved using invasive (skin piercing) methods which causes pain and damage to skin. A non-invasive device to test blood glucose level will avoid these drawbacks and minimise the complications of diabetes. The main aim of the project is to investigate the relationship between varying concentrations of glucose in a water solution (to simulate blood) and the signal level within a resonant microwave cavity, which is the key to the development of a non-invasive blood glucose monitoring system. This thesis outlines the mechanical design, electronic and software design, involved in the development of such a system. In this project, the RSSI (received signal strength indicator) measurement is used to measure the signal levels within a microwave cavity. This was taken from a one of a pair of HC-05 Bluetooth modules, one operating as a transmitter, and one operating as a receiver. The results of experiments confirmed a significant correlation between RSSI and glucose concentration – and thus, the success of the system. As well as proving itself to be a viable non-invasive blood glucose measurement system, additional features of this system were low cost, and expandability

    Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. Bcr-Abl-T315I is the notorious point mutation that causes resistance to imatinib and the second generation tyrosine kinase inhibitors, leading to poor prognosis. CML blasts have constitutive p65 (RelA NF-κB) transcriptional activity, and NF-κB may be a potential target for molecular therapies in CML that may also be effective against CML cells with Bcr-Abl-T315I.</p> <p>Results</p> <p>In this report, we discovered that pristimerin, a quinonemethide triterpenoid isolated from Celastraceae and Hippocrateaceae, inhibited growth and induced apoptosis in CML cells, including the cells harboring Bcr-Abl-T315I mutation. Additionally, pristimerin inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Pristimerin blocked the TNFα-induced IκBα phosphorylation, translocation of p65, and expression of NF-κB-regulated genes. Pristimerin inhibited two steps in NF-κB signaling: TAK1→IKK and IKK→IκBα. Pristimerin potently inhibited two pairs of CML cell lines (KBM5 versus KBM5-T315I, 32D-Bcr-Abl versus 32D-Bcr-Abl-T315I) and primary cells from a CML patient with acquired resistance to imatinib. The mRNA and protein levels of Bcr-Abl in imatinib-sensitive (KBM5) or imatinib-resistant (KBM5-T315I) CML cells were reduced after pristimerin treatment. Further, inactivation of Bcr-Abl by imatinib pretreatment did not abrogate the TNFα-induced NF-κB activation while silencing p65 by siRNA did not affect the levels of Bcr-Abl, both results together indicating that NF-κB inactivation and Bcr-Abl inhibition may be parallel independent pathways.</p> <p>Conclusion</p> <p>To our knowledge, this is the first report to show that pristimerin is effective <it>in vitro </it>and <it>in vivo </it>against CML cells, including those with the T315I mutation. The mechanisms may involve inhibition of NF-κB and Bcr-Abl. We concluded that pristimerin could be a lead compound for further drug development to overcome imatinib resistance in CML patients.</p

    ABI4 Mediates Antagonistic Effects of Abscisic Acid and Gibberellins at Transcript and Protein Levels

    Get PDF
    Abscisic acid (ABA) and gibberellins (GA) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA- INSENSITIVE 4 (ABI4) is a central factor for GA/ABA homeostasis and antagonism in post-germination stages. ABI4 over-expression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 over-expression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio compared to the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein, whereas GA promotes its degradation. Taken together, these results propose that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels

    Transcriptional Profiling of Protein Expression Related Genes of Pichia pastoris under Simulated Microgravity

    Get PDF
    The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG) were substantially changed compared with normal gravity (NG) control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS) technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO) were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes) and protein transportation or secretion (82.2% of 45 genes) were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG

    Temporal and Quantitative Analysis of Atherosclerotic Lesions in Diet-Induced Hypercholesterolemic Rabbits

    Get PDF
    The diet-induced atherosclerotic rabbit is an ideal model for atherosclerosis study, but temporal changes in atherosclerotic development in hypercholesterolemic rabbits are poorly understood. Japanese white rabbits were fed a high-cholesterol diet to induce sustained hypercholesterolemia, and each group of 10–12 animals was then sacrificed at 6, 12, 16, or 28 weeks. The rabbit aortas were harvested, and the sizes of the gross and intima atherosclerotic lesions were quantified. The cellular component of macrophages (Mφs) and smooth muscle cells (SMCs) in aortic intimal lesions was also quantified by immunohistochemical staining, and the correlation between plasma cholesterol levels and the progress of atherosclerotic lesions was studied. The ultrastructure of the atherosclerotic lesions was observed by transmission electron microscopy (TEM). Widely variable atherosclerotic plaques were found from 6 weeks to 28 weeks, and the lesional progress was closely correlated with cholesterol exposure. Interestingly, a relatively reduced accumulation of Mφ, an increased numbers of SMCs, and a damaged endothelial layer were presented in advanced lesions. Moreover, SMCs were closely correlated with cholesterol exposure and lesional progress for the whole period. Cholesterol exposure directly determines atherosclerotic progress in a rabbit model, and the changes in the cellular component of advanced lesions may affect plaque stability in an atherosclerotic rabbit model

    Recent novel tumor gatekeepers and potential therapeutic approaches (2017)

    Get PDF
    Tumor remains a challenging task for oncology community. Drug resistance due to chemotherapy remain principal impediments  toward potential therapeutic strategies. Development of novel anti-cancer drugs or new targeted strategies to conquer drug  resistance is a key goal of cancer research. In this respect, novel tumor gatekeepers and innovative targeted strategies can be  helpful in overcoming drug resistance as well as improve currently used targeted therapies. In this review, efforts have been made to present some of the latest knowledge about novel tumor gatekeepers and new therapeutic strategies to improve the efficacy of  chemotherapy and give new hope to cancer patients to fight against cancer.Keywords: Cancer, Potent inhibitors, Gatekeepers, Therapeutic approaches, Oncogenic pathway

    Grain yield and interspecific competition in an oat-common vetch intercropping system at varying sowing density

    Get PDF
    IntroductionOat (Avena nuda L.) and common vetch (Vicia sativa L.) intercropping in the northern regions of China has resulted in substantial production capabilities. However, there is currently a dearth of comprehensive research on whether this intercropping system can enhance productivity through increased sowing densities and underlying interspecies interaction mechanisms.MethodsA two-year field experiment was conducted in 2022 and 2023 to investigate the yield, biological efficiency, economic efficiency, and competition indicators of oats and common vetch in a high-density intercropping system. Two cropping patterns (monocropping and intercropping) and five sowing densities (D1: 4.5×106 plants ha-1; D2:5.4×106 plants ha-1; D3:6.3×106 plants ha-1; D4: 7.2×106 plants ha-1; and D5: 8.1×106 plants ha-1) were arranged in a randomized block design.ResultsAt the same sowing density, the intercropped oats exhibited greater grain yield than the monocultures. Increasing the oat sowing density significantly enhanced oat yield, with the D3 level in intercropping showing the highest yield increase, ranging from 30.98% to 31.85%, compared with the monoculture. The common vetch intercropping grain yield was maximized in the D2 treatment. The land equivalent ratio was maximized at the D2 level in both years and was significantly higher than D1, with the land equivalent coefficient, system productivity index, and percentage yield difference suggesting that increasing oat sowing densities improved the productivity of the intercropping system, with the best performance observed at the D2 level. For both years, the proportionate actual yield loss of oat was the highest at the D3 level; significantly surpassing D1, proportionate actual yield loss of common vetch and actual yield loss were the highest at level D2, both significantly surpassing D1. These indicates that appropriate densification contributes to the realization of the advantages of intercropping. With an increased oat sowing density, the economic benefits of the intercropping system were maximized at the D2 and D3 levels. Regarding intercropping competition, oat was the dominant crop under different sowing densities (Aggressivity for oat (AO)&gt;0, relative crowding coefficient for oat (KO)&gt;1, competition ratio for oat (CRO)&gt;1), whereas common vetch was the inferior crop. Compared with the D1 level, the D2 level harmonized the aggressivity, competitive ratio, and relative crowding coefficients of oat and common vetch, significantly increasing crowding coefficient for common vetch (KV) and competition ratio for common vetch by 19.76% to 21.94% and 4.80% to 7.51%, respectively, while reducing KO and CRO.DiscussionThis result suggests that in the intercropping of common vetch and oat in alpine regions, rational densification can harmonize interspecific competition and thus improve the biological efficiency and economic benefits of intercropping systems

    Thermodynamic Stabilities of Perfect and Vacancy-Defected Li2 TiO3 (001) Surfaces From First-Principles Analyses

    Get PDF
    Lithium titanate (Li2TiO3) is an attractive ceramic material for various industrial applications, particularly as one of the most promising breeder blanket materials in future nuclear-fusion reactors. Previously reported studies mainly focus on sintered polycrystalline samples of Li2TiO3. Surface structure of the single-crystal form is rarely reported, although the information of surface structures and stabilities can be critical for further understanding the surface-associated processes. In this work, we perform extensive first-principles density-functional-theory (DFT) calculations to obtain the surface energies of Li2TiO3 (001) with different surface terminations. For four perfect (defect-free) Li-, O-, or LiTi-terminated (001) surfaces, Li- or O-terminated (001) surfaces can be most stable in limited chemical-potential ranges corresponding to certain experimental conditions, while a LiTi-terminated (001) surface is always unfavorable relative to Li or O terminations. By calculating the total energies of various possible configurations with surface vacancies, we determine the energetically most favorable vacancy-defected surface terminations. From the corresponding ternary phase diagram, we analyze the stability of a specific surface termination with vacancies as well as the possible formation of oxides. Our stability analysis together with DFT-simulated STM images reveals that a 1/3-monolayer-Li-terminated surface most likely corresponds to the ordered hexagonal-like pattern observed previously in STM experiments. For a 1/2-monolayer-Li-terminated surface, the most stable surface structure from our DFT calculations contrasts with previous results from an empirical-potential model

    Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes

    Get PDF
    Publisher Copyright: © 2021 American Chemical SocietyMolecular analyses help to investigate the key precursors and chemical processes of secondary organic aerosol (SOA) formation. We obtained the sources and molecular compositions of organic aerosol in PM2.5in winter in Beijing by online and offline mass spectrometer measurements. Photochemical and aqueous processing were both involved in producing SOA during the haze events. Aromatics, isoprene, long-chain alkanes or alkenes, and carbonyls such as glyoxal and methylglyoxal were all important precursors. The enhanced SOA formation during the severe haze event was predominantly contributed by aqueous processing that was promoted by elevated amounts of aerosol water for which multifunctional organic nitrates contributed the most followed by organic compounds having four oxygen atoms in their formulae. The latter included dicarboxylic acids and various oxidation products from isoprene and aromatics as well as products or oligomers from methylglyoxal aqueous uptake. Nitrated phenols, organosulfates, and methanesulfonic acid were also important SOA products but their contributions to the elevated SOA mass during the severe haze event were minor. Our results highlight the importance of reducing nitrogen oxides and nitrate for future SOA control. Additionally, the formation of highly oxygenated long-chain molecules with a low degree of unsaturation in polluted urban environments requires further research.Peer reviewe

    Rapid detection of porcine circovirus type 4 via multienzyme isothermal rapid amplification

    Get PDF
    Porcine circovirus type 4 (PCV4) is a newly emerging pathogen that was first detected in 2019 and is associated with diverse clinical signs, including respiratory and gastrointestinal distress, dermatitis and various systemic inflammations. It was necessary to develop a sensitive and specific diagnostic method to detect PCV4 in clinical samples, so in this study, a multienzyme isothermal rapid amplification (MIRA) assay was developed for the rapid detection of PCV4 and evaluated for sensitivity, specificity and applicability. It was used to detect the conserved Cap gene of PCV4, operated at 41°C and completed in 20 min. With the screening of MIRA primer-probe combination, it could detect as low as 101 copies of PCV4 DNA per reaction and was highly specific, with no cross-reaction with other pathogens. Further assessment with clinical samples showed that the developed MIRA assay had good correlation with real-time polymerase chain reaction assay for the detection of PCV4. The developed MIRA assay will be a valuable tool for the detection of the novel PCV4 in clinical samples due to its high sensitivity and specificity, simplicity of operation and short testing time
    corecore