26 research outputs found
Recommended from our members
Engineering correlated insulators in bilayer graphene with a remote Coulomb superlattice
Electron superlattices allow the engineering of correlated and topological quantum phenomena. The recent emergence of moiré superlattices in two-dimensional heterostructures has led to exciting discoveries related to quantum phenomena. However, the requirement for the moiré pattern poses stringent limitations, and its potential cannot be switched on and off. Here, we demonstrate remote engineering and on/off switching of correlated states in bilayer graphene. Employing a remote Coulomb superlattice realized by localized electrons in twisted bilayer WS2, we impose a Coulomb superlattice in the bilayer graphene with period and strength determined by the twisted bilayer WS2. When the remote superlattice is turned off, the two-dimensional electron gas in the bilayer graphene is described by a Fermi liquid. When it is turned on, correlated insulating states at both integer and fractional filling factors emerge. This approach enables in situ control of correlated quantum phenomena in two-dimensional materials hosting a two-dimensional electron gas
Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface
In single unit-cell FeSe grown on SrTiO3, the superconductivity transition
temperature features a significant enhancement. Local phonon modes at the
interface associated with electron-phonon coupling may play an important role
in the interface-induced enhancement. However, such phonon modes have eluded
direct experimental observations. Indeed, the complicated atomic structure of
the interface brings challenges to obtain the accurate structure-phonon
relation knowledge from either experiment or theory, thus hindering our
understanding of the enhancement mechanism. Here, we achieve direct
characterizations of atomic structure and phonon modes at the FeSe/SrTiO3
interface with atomically resolved imaging and electron energy loss
spectroscopy in a scanning transmission electron microscope. We find several
phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O
termination at the interface, one of which (~ 83 meV) engages in strong
interactions with the electrons in FeSe based on ab initio calculations. The
electron-phonon coupling strength for such a localized interface phonon with
short-range interactions is comparable to that of Fuchs-Kliewer (FK) phonon
mode with long-rang interactions. Thus, our atomic-scale study provides new
insights into understanding the origin of superconductivity enhancement at the
FeSe/SrTiO3 interface
Low Resistance Ohmic Contact to P-type Monolayer WSe2
Advanced microelectronics in the future may require semiconducting channel
materials beyond silicon. Two-dimensional (2D) semiconductors, characterized by
their atomically thin thickness, hold immense promise for high-performance
electronic devices at the nanometer scale with lower heat dissipation. One
challenge for achieving high-performance 2D semiconductor field effect
transistors (FET), especially for p-type materials, is the high electrical
contact resistance present at the metal-semiconductor interface. In
conventional bulk semiconductors, low resistance ohmic contact is realized
through heavy substitutional doping with acceptor or donor impurities at the
contact region. The strategy of substitutional doping, however, does not work
for p-type 2D semiconductors such as monolayer tungsten diselenide (WSe).In
this study, we developed highly efficient charge-transfer doping with
WSe/-RuCl heterostructures to achieve low-resistance ohmic
contact for p-type WSe transistors. We show that a hole doping as high as
310 cm can be achieved in the WSe-RuCl
heterostructure due to its type-III band alignment. It results in an Ohmic
contact with resistance lower than 4 k Ohm m at the p-type monolayer
WSe/metal junction. at room temperature. Using this low-resistance contact,
we demonstrate high-performance p-type WSe transistors with a saturation
current of 35 A m and an I/I ratio
exceeding 10 It could enable future microelectronic devices based on 2D
semiconductors and contribute to the extension of Moore's law
Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures
Coupled two-dimensional electron-hole bilayers provide a unique platform to
study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons
and holes in spatially separated layers can bind to form interlayer excitons,
composite Bosons expected to support high-temperature exciton superfluids. The
interlayer excitons can also interact strongly with excess charge carriers when
electron and hole densities are unequal. Here, we use optical spectroscopy to
quantitatively probe the local thermodynamic properties of strongly correlated
electron-hole fluids in MoSe2/hBN/WSe2 heterostructures. We observe a
discontinuity in the electron and hole chemical potentials at matched electron
and hole densities, a definitive signature of an excitonic insulator ground
state. The excitonic insulator is stable up to a Mott density of ~ and has a thermal ionization temperature of ~70 K.
The density dependence of the electron, hole, and exciton chemical potentials
reveals strong correlation effects across the phase diagram. Compared with a
non-interacting uniform charge distribution, the correlation effects lead to
significant attractive exciton-exciton and exciton-charge interactions in the
electron-hole fluid. Our work highlights the unique quantum behavior that can
emerge in strongly correlated electron-hole systems
Recommended from our members
Low Resistance Contact to P‑Type Monolayer WSe2
Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ μm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 μA·μm-1 and an ION/IOFF ratio exceeding 109 at room temperature