678 research outputs found
Phase-Remapping Attack in Practical Quantum Key Distribution Systems
Quantum key distribution (QKD) can be used to generate secret keys between
two distant parties. Even though QKD has been proven unconditionally secure
against eavesdroppers with unlimited computation power, practical
implementations of QKD may contain loopholes that may lead to the generated
secret keys being compromised. In this paper, we propose a phase-remapping
attack targeting two practical bidirectional QKD systems (the "plug & play"
system and the Sagnac system). We showed that if the users of the systems are
unaware of our attack, the final key shared between them can be compromised in
some situations. Specifically, we showed that, in the case of the
Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when
the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders
the final key insecure, whereas the same range of QBER values has been proved
secure if the two users are unaware of our attack; also, we demonstrated three
situations with realistic devices where positive key rates are obtained without
the consideration of Trojan horse attacks but in fact no key can be distilled.
We remark that our attack is feasible with only current technology. Therefore,
it is very important to be aware of our attack in order to ensure absolute
security. In finding our attack, we minimize the QBER over individual
measurements described by a general POVM, which has some similarity with the
standard quantum state discrimination problem.Comment: 13 pages, 8 figure
Quantum Hacking: Experimental demonstration of time-shift attack against practical quantum key distribution systems
Quantum key distribution (QKD) systems can send signals over more than 100 km
standard optical fiber and are widely believed to be secure. Here, we show
experimentally for the first time a technologically feasible attack, namely the
time-shift attack, against a commercial QKD system. Our result shows that,
contrary to popular belief, an eavesdropper, Eve, has a non-negligible
probability (~4%) to break the security of the system. Eve's success is due to
the well-known detection efficiency loophole in the experimental testing of
Bell inequalities. Therefore, the detection efficiency loophole plays a key
role not only in fundamental physics, but also in technological applications
such as QKD.Comment: 5 pages, 3 figures. Substantially revised versio
Phase encoding schemes for measurement device independent quantum key distribution and basis-dependent flaw
In this paper, we study the unconditional security of the so-called
measurement device independent quantum key distribution (MDIQKD) with the
basis-dependent flaw in the context of phase encoding schemes. We propose two
schemes for the phase encoding, the first one employs a phase locking technique
with the use of non-phase-randomized coherent pulses, and the second one uses
conversion of standard BB84 phase encoding pulses into polarization modes. We
prove the unconditional security of these schemes and we also simulate the key
generation rate based on simple device models that accommodate imperfections.
Our simulation results show the feasibility of these schemes with current
technologies and highlight the importance of the state preparation with good
fidelity between the density matrices in the two bases. Since the
basis-dependent flaw is a problem not only for MDIQKD but also for standard
QKD, our work highlights the importance of an accurate signal source in
practical QKD systems.
Note: We include the erratum of this paper in Appendix C. The correction does
not affect the validity of the main conclusions reported in the paper, which is
the importance of the state preparation in MDIQKD and the fact that our schemes
can generate the key with the practical channel mode that we have assumed.Comment: We include the erratum of this paper in Appendix C. The correction
does not affect the validity of the main conclusions reported in the pape
Augmenter of liver regeneration ameliorates renal fibrosis in rats with obstructive nephropathy
Synopsis Renal fibrosis is a hallmark in CKD (chronic kidney disease) and is strongly correlated to the deterioration of renal function that is characterized by tubulointerstitial fibrosis, tubular atrophy, glomerulosclerosis and disruption of the normal architecture of the kidney. ALR (augmenter of liver regeneration) is a growth factor with biological functions similar to those of HGF (hepatocyte growth factor). In this study, our results indicate that endogenous ALR is involved in the pathological progression of renal fibrosis in UUO (unilateral ureteral obstruction) rat model. Moreover, we find that administration of rhALR (recombinant human ALR) significantly alleviates renal interstitial fibrosis and reduces renal-fibrosis-related proteins in UUO rats. Further investigation reveals that rhALR suppresses the up-regulated expression of TGF-β1 (transforming growth factor β1) induced by UUO operation in the obstructed kidney, and inhibits Smad2 and Smad3 phosphorylation activated by the UUO-induced injury in the animal model. Therefore we suggest that ALR is involved in the progression of renal fibrosis and administration of rhALR protects the kidney against renal fibrosis by inhibition of TGF-β/Smad activity
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Recommended from our members
Novel Phosphorylation Sites in the S. cerevisiae Cdc13 Protein Reveal New Targets for Telomere Length Regulation
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics. [Image: see text
An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm
Thoracic aortic aneurysm (TAA) has been associated with mutations affecting members of the TGF-β signaling pathway, or components and regulators of the vascular smooth muscle cell (VSMC) actomyosin cytoskeleton. Although both clinical groups present similar phenotypes, the existence of potential common mechanisms of pathogenesis remain obscure. Here we show that mutations affecting TGF-β signaling and VSMC cytoskeleton both lead to the formation of a ternary complex comprising the histone deacetylase HDAC9, the chromatin-remodeling enzyme BRG1, and the long noncoding RNA MALAT1. The HDAC9–MALAT1–BRG1 complex binds chromatin and represses contractile protein gene expression in association with gain of histone H3-lysine 27 trimethylation modifications. Disruption of Malat1 or Hdac9 restores contractile protein expression, improves aortic mural architecture, and inhibits experimental aneurysm growth. Thus, we highlight a shared epigenetic pathway responsible for VSMC dysfunction in both forms of TAA, with potential therapeutic implication for other known HDAC9-associated vascular diseases
- …