1,330 research outputs found

    Venous Thromboembolism in Liver Cirrhosis: An Emerging Issue

    Get PDF
    Venous thromboembolism (VTE) carries a high morbidity and mortality and leads to a substantial economic burden. From the traditional perspectives, liver cirrhosis tends to bleeding but not VTE. However, modern concepts suggest that liver cirrhosis is also at a risk of VTE. The pooled incidence and prevalence of VTE in liver cirrhosis are 1% (95% confidence interval: 0.7–1.3%) and 1% (95% confidence interval: 0.7–1.2%), respectively. Evidence indicates that a higher international normalized ratio and a lower albumin should be associated with a higher probability of VTE in liver cirrhosis. Additionally, the presence of VTE significantly worsens the outcomes of liver cirrhosis

    What is the best spatial distribution to model base station density? A deep dive into two european mobile networks

    Get PDF
    This paper studies the base station (BS) spatial distributions across different scenarios in urban, rural, and coastal zones, based on real BS deployment data sets obtained from two European countries (i.e., Italy and Croatia). Basically, this paper takes into account different representative statistical distributions to characterize the probability density function of the BS spatial density, including Poisson, generalized Pareto, Weibull, lognormal, and \alpha -Stable. Based on a thorough comparison with real data sets, our results clearly assess that the \alpha -Stable distribution is the most accurate one among the other candidates in urban scenarios. This finding is confirmed across different sample area sizes, operators, and cellular technologies (GSM/UMTS/LTE). On the other hand, the lognormal and Weibull distributions tend to fit better the real ones in rural and coastal scenarios. We believe that the results of this paper can be exploited to derive fruitful guidelines for BS deployment in a cellular network design, providing various network performance metrics, such as coverage probability, transmission success probability, throughput, and delay

    Semantic Communication Enabling Robust Edge Intelligence for Time-Critical IoT Applications

    Full text link
    This paper aims to design robust Edge Intelligence using semantic communication for time-critical IoT applications. We systematically analyze the effect of image DCT coefficients on inference accuracy and propose the channel-agnostic effectiveness encoding for offloading by transmitting the most meaningful task data first. This scheme can well utilize all available communication resource and strike a balance between transmission latency and inference accuracy. Then, we design an effectiveness decoding by implementing a novel image augmentation process for convolutional neural network (CNN) training, through which an original CNN model is transformed into a Robust CNN model. We use the proposed training method to generate Robust MobileNet-v2 and Robust ResNet-50. The proposed Edge Intelligence framework consists of the proposed effectiveness encoding and effectiveness decoding. The experimental results show that the effectiveness decoding using the Robust CNN models perform consistently better under various image distortions caused by channel errors or limited communication resource. The proposed Edge Intelligence framework using semantic communication significantly outperforms the conventional approach under latency and data rate constraints, in particular, under ultra stringent deadlines and low data rate

    Systems chemistry: logic gates based on the stimuli-responsive gel-sol transition of a crown ether-functionalized bis(urea) gelator

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A quite simple, achiral benzo-21-crown-7-substituted bis(urea) low-molecular weight gelator hierarchically assembles into helical fibrils, which further develop into bundles and finally form a stable gel in acetonitrile. The gel–sol transition can be controlled by three different molecular recognition events: K+ binding to the crown ethers, pseudorotaxane formation with secondary ammonium ions and Cl− binding to the urea units. Addition of a cryptand that scavenges the K+ ions and Ag+ addition to remove the chloride and bases/acids, which mediate pseudorotaxane formation, can reverse this process. With the gelator, and these chemical stimuli, a number of different systems can be designed that behave as logic gates. Depending on the choice of components, OR, AND, XOR, NOT, NOR, XNOR and INHIBIT gates have been realized. Thus, the gel–sol transition as a property of the system as a whole is influenced in a complex manner. For some cases, the type of logic gate is defined by input signal concentration so that an even more complex reaction of the gel towards the two input signals is achieved.DFG, SFB 765, Multivalenz als chemisches Organisations- und Wirkprinzip: Neue Architekturen, Funktionen und Anwendunge

    The Impact of an Educational Human Trafficking Panel on Occupational Therapy Students’ Knowledge and Self-Efficacy

    Get PDF
    A rise in attention to and assistance for human trafficking (HT) victims and survivors has resulted in a call to action for occupational therapists and other healthcare professionals. Victims and survivors often seek healthcare services in a variety of settings, yet ill-equipped healthcare professionals lacking training and self-efficacy with this population have left many unidentified needs unaddressed. Occupational therapists possess the skills necessary to support and assist survivors of HT in their reintegration and healing processes. However, little to no specific training for practitioners in this field has been developed. This study explored how an educational panel of OTs and HT experts who have worked with occupational therapists impacted occupational therapists’ knowledge and perceived self-efficacy regarding HT and its intersection with occupational therapy. A 1.5-hour interactive panel was assembled and prepared for a synchronous Zoom meeting by the researchers. Eighty students completed both pre- and post-surveys. Post-panel surveys revealed that students’ knowledge of the intersection between HT and occupational therapy improved, their perceived self-efficacy in assisting victims and survivors of HT increased, and their perspective on the panel format and content was favorable. The survey findings also indicated students’ desire for continued professional education and occupational therapy practice skills focused on the topic of HT. One way to address the gaps in the knowledge and self-efficacy of healthcare providers is to equip them with knowledge and skills on treating HT victims through training during their didactic curriculum and in clinical practice

    Deep neural network approach in human-like redundancy optimization for anthropomorphic manipulators

    Get PDF
    © 2013 IEEE. Human-like behavior has emerged in the robotics area for improving the quality of Human-Robot Interaction (HRI). For the human-like behavior imitation, the kinematic mapping between a human arm and robot manipulator is one of the popular solutions. To fulfill this requirement, a reconstruction method called swivel motion was adopted to achieve human-like imitation. This approach aims at modeling the regression relationship between robot pose and swivel motion angle. Then it reaches the human-like swivel motion using its redundant degrees of the manipulator. This characteristic holds for most of the redundant anthropomorphic robots. Although artificial neural network (ANN) based approaches show moderate robustness, the predictive performance is limited. In this paper, we propose a novel deep convolutional neural network (DCNN) structure for reconstruction enhancement and reducing online prediction time. Finally, we utilized the trained DCNN model for managing redundancy control a 7 DoFs anthropomorphic robot arm (LWR4+, KUKA, Germany) for validation. A demonstration is presented to show the human-like behavior on the anthropomorphic manipulator. The proposed approach can also be applied to control other anthropomorphic robot manipulators in industry area or biomedical engineering

    Understanding patient experiences before and during the COVID-19 pandemic: A quasi-experimental comparison of in-person and virtual cancer care

    Get PDF
    The COVID-19 pandemic prompted the immediate widespread implementation of virtual care appointments in Cancer Care Alberta (CCA). This study aimed to compare patient experiences and satisfaction with in-person care provided prior to the pandemic and virtual care provided after the COVID-19 outbreak. Surveys were conducted to compare patient satisfaction, using the Your Voice Matters (YVM) experience survey, between patients in the pre-pandemic in-person (baseline) and post-outbreak (virtual) cohorts. Generalized Linear Models (GLMs) with an ordinal logistic link were used, adjusting for self-reported health status and other covariates, to investigate the association between cohort type and patient satisfaction. Despite having higher overall health status, the virtual cohort reported statistically significantly lower satisfaction than the baseline with emotional concerns, referrals and resources, and friend/family involvement in their care. Patients in the virtual cohort were much less likely to have completed a routinely used symptom-based Patient Reported Outcomes (PROs) questionnaire, which may help explain satisfaction differences. The additional stressors brought about by the pandemic, as well as the mode of virtual care delivery, both likely contributed to the lower satisfaction of the virtual cohort as well. Understanding the key differences in experience between the two cohorts will inform the development of a larger virtual care strategy within CCA in the future. Experience Framework This article is associated with the Innovation & Technology lens of The Beryl Institute Experience Framework (https://www.theberylinstitute.org/ExperienceFramework). Access other PXJ articles related to this lens. Access other resources related to this len

    The Circulating Concentration and 24-h Urine Excretion of Magnesium Dose- and Time-Dependently Respond to Oral Magnesium Supplementation in a Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background: Accurate determination of Mg status is important for improving nutritional assessment and clinical risk stratification. Objective: We aimed to quantify the overall responsiveness of Mg biomarkers to oral Mg supplementation among adults without severe diseases and their dose- and time responses using available data from randomized controlled trials (RCTs). Methods: We identified 48 Mg supplementation trials (n = 2131) through searches of MEDLINE and the Cochrane Library up to November 2014. Random-effects meta-analysis was used to estimate weighted mean differences of biomarker concentrations between intervention and placebo groups. Restricted cubic splines were used to determine the dose- and time responses of Mg biomarkers to supplementation. Results: Among the 35 biomarkers assessed, serum, plasma, and urine Mg were most commonly measured. Elemental Mg supplementation doses ranged from 197 to 994 mg/d. Trials ranged from 3 wk to 5 y (median: 12 wk). Mg supplementation significantly elevated circulating Mg by 0.04 mmol/L (95% CI: 0.02, 0.06) and 24-h urine Mg excretion by 1.52 mmol/24 h (95% CI: 1.20, 1.83) as compared to placebo. Circulating Mg concentrations and 24-h urine Mg excretion responded to Mg supplementation in a dose- and time-dependent manner, gradually reaching a steady state at doses of 300 mg/d and 400 mg/d, or after ~20 wk and 40 wk, respectively (all P-nonlinearity ≤ 0.001). The higher the circulating Mg concentration at baseline, the lower the responsiveness of circulating Mg to supplementation, and the higher the urinary excretion (all P-linearity < 0.05). In addition, RBC Mg, fecal Mg, and urine calcium were significantly more elevated by Mg supplementation than by placebo (all P-values < 0.05), but there is insufficient evidence to determine their responses to increasing Mg doses. Conclusions: This meta-analysis of RCTs demonstrated significant dose- and time responses of circulating Mg concentration and 24-h urine Mg excretion to oral Mg supplementation
    • …
    corecore