1,100 research outputs found

    C-Cl Bond Fission, Hcl Elimination, And Secondary Radical Decomposition In The 193 Nm Photodissociation Of Allyl Chloride

    Get PDF
    The primary photodissociation dynamics of allyl chloride upon excitation at 193 nm is investigated in a crossed laser-molecular beam scattering apparatus. Tunable vacuum ultraviolet (VUV) photoionization of the products provides a unique ability to learn about the secondary reaction products of the nascent photoproducts formed. The data show evidence for four significant primary reaction channels: a previously unidentified low kinetic energy C-Cl bond fission channel producing unstable allyl radicals, an excited state C-Cl bond fission channel producing Cl atoms with high translational energy, an HCl elimination pathway releasing significant energy to product translation to HCl and its momentum-matched mass 40 partner, and an HCl elimination channel producing low kinetic energy HCl products and predominantly unstable mass 40 products. The measured branching of these primary reaction channels of [all C-Cl] : [fast C-Cl] : [slow C-Cl] : [fast HCl] : [slow HCl] : [all HCl] is 1.00: 0.971: 0.029: 0.291: 0.167: 0.458 (where fast refers to the high recoil kinetic energy channels). The high internal energy allyl radicals formed in the slow C-Cl fission pathway of allyl chloride further dissociate/isomerize, as do the unstable mass 40 products formed in the HCl elimination pathways, and these products are investigated. Photoionization efficiency (PIE) curves of the HCl product suggest that a three-centered elimination mechanism contributes significantly to an observed HCl elimination reaction. (C) 2002 American Institute of Physics

    Inside Debt

    Get PDF
    Existing theories advocate the exclusive use of equity-like instruments in executive compensation. However, recent empirical studies document the prevalence of debt-like instruments such as pensions. This paper justifies the use of debt as efficient compensation. Inside debt is a superior solution to the agency costs of debt than the solvency-contingent bonuses and salaries proposed by prior literature, since its payoff depends not only on the incidence of bankruptcy but also firm value in bankruptcy. Contrary to intuition, granting the manager equal proportions of debt and equity is typically inefficient. In most cases, an equity bias is desired to induce effort. However, if effort is productive in increasing liquidation value, or if bankruptcy is likely, a debt bias can improve effort as well as alleviate the agency costs of debt. The model generates a number of empirical predictions consistent with recent evidence

    Recycling of titanium alloys from machining chips using equal channel angular pressing

    Get PDF
    During the traditional manufacturing route, there are large amount of titanium alloys wasted in the form of machining chips. The conventional recycling methods require high energy consumption and capital cost. Equal channel angular pressing (ECAP), one of the severe plastic deformation techniques, has been developed to recycle the metallic machining chips. The purpose of the PhD work is to realize the ECAP recycling of titanium alloys, in particular Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn, and investigate the effects of processing parameters on the resultant relative density, microstructure evolution, texture development and microhardness homogeneity. The microstructures of Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn machining chips obtained from conventional turning (CT) and ultrasonically assisted turning (UAT) were initially investigated. It was found that ultrafine grains were formed in the primary and secondary shear zones. For Ti-6Al-4V chips, the β phase in the shear zones was refined into nano-sized equiaxed grains and aligned up to form banded structures. For Ti-15V-3Cr-3Al-3Sn chips, the nano-crystalline grains were enveloped in the shear zones and have clear boundaries to the surrounding matrix. It was observed that in terms of microstructure, there is no significant difference between CT and UAT chips. Recycling of Ti-6Al-4V machining chips was carried out at moderate temperatures with various back-pressures. For single-pass samples, the relative density was increased with the applied back-pressure and operating temperature. It was found that after multiple passes, near fully dense recycled Ti-6Al-4V can be fabricated. The microstructure observations showed that the nano-sized equiaxed and elongated grains co-existed with relatively coarser lamellar structures which were initially refined after the first pass. In the subsequent passes, the fraction of equiaxed nano-grains increased with the number of passes. The original β phase banded structures were fragmented into individual nano-sized grains randomly distributed within α matrix. The chip boundaries were eliminated and nano-crystalline microstructure region was observed at the chip/chip interface after multiple passes. In the sample processed at 550 °C, type dislocations were observed and oxide layer at chip/chip interface was detected. The texture evolution was investigated using electron backscatter diffraction. It was found that the recycled samples performed a strong basal texture along the normal to ECAP inclination direction after the first pass. After multiple passes, in addition to the normal to inclination direction, the recycled Ti-6Al-4V exhibits a basal texture towards the transverse direction. Microhardness mapping showed that the average hardness and degree of homogeneity were increased with number of passes, while the imposed back-pressure had little effect on the average value and homogeneity. Recycling of Ti-15V-3Cr-3Al-3Sn machining chips was implemented using similar ECAP conditions. The effects of processing parameters, such as back-pressure, operating temperature and number of passes, on the relative density were similar to those for Ti-6Al-4V. Microstructural characterization showed that equiaxed instead of needle shaped α precipitates formed in the β matrix due to the high dislocation density and sub-grain boundaries introduced during ECAP. In terms of microhardness, the maximum hardness was obtained at the specimen pressed at 450 °C. It was found that the applied back-pressure and number of passes enabled to improve the homogeneity, but had little effect on the average hardness.</a

    Strategy evolution on dynamic networks

    Full text link
    Models of strategy evolution on static networks help us understand how population structure can promote the spread of traits like cooperation. One key mechanism is the formation of altruistic spatial clusters, where neighbors of a cooperative individual are likely to reciprocate, which protects prosocial traits from exploitation. But most real-world interactions are ephemeral and subject to exogenous restructuring, so that social networks change over time. Strategic behavior on dynamic networks is difficult to study, and much less is known about the resulting evolutionary dynamics. Here, we provide an analytical treatment of cooperation on dynamic networks, allowing for arbitrary spatial and temporal heterogeneity. We show that transitions among a large class of network structures can favor the spread of cooperation, even if each individual social network would inhibit cooperation when static. Furthermore, we show that spatial heterogeneity tends to inhibit cooperation, whereas temporal heterogeneity tends to promote it. Dynamic networks can have profound effects on the evolution of prosocial traits, even when individuals have no agency over network structures.Comment: 45 pages; final versio

    Illuminating the Landscape of In Vivo Immunity Insights from Dynamic In Situ Imaging of Secondary Lymphoid Tissues

    Get PDF
    AbstractA central feature of the immune system is the migratory behavior of its cellular components. Thus, fully understanding the generation and maintenance of immune responses must include consideration of how hematopoietic cells home to, interact within, and exit from secondary lymphoid organs as well as peripheral tissues. Recent advances in in situ imaging techniques now permit direct observation of these events in their physiologic settings with high spatiotemporal resolution. This review summarizes progress in this area of investigation from a lymphocentric perspective. We highlight controversies, point out key unanswered questions, and briefly outline what we believe are some of the near-term directions that in situ microscopic analysis of the immune system will take
    • …
    corecore