149 research outputs found

    Einfluss unterschiedlicher Kraftfuttermengen auf klinische und pansenhistologische Parameter bei abgesetzten Ziegenkitzen

    Get PDF
    The objective of this study was to examine the influences of different levels of grain in the ration on clinical parameters and histological variables of the rumen epithelium. Seventeen 4-months old goats were allocated to three feeding groups (hay, 30 % grain, 60 % grain). After an adaptation time of three weeks the goats were fed four weeks the experimental ration, weekly adjusted to the body weight. Pulse, respiration, rumen activity and fecal consistency were recorded at the beginning and the end of the adaptation and experimental period, respectively. In the first and fifth week rumen liquid was collected via tube. At the end of the experiment goats were euthanized and rumen liquid was collected for pH measuring, and rumen epithelium for histological examination. Feeding grain in 4 months old goats had influence on clinical parameters (within physiological ranges) and fecal score. A differentiation of the rumen epithelium was recorded with thickness of the stratum corneum. Feeding more grain was associated with lowered rumen pH. In conclusion, although clinical and histological changes were detected in goats in response to feeding different amounts of grain, these changes did not show consequences for clinical health except for fecal consistency

    Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs

    Get PDF
    Ca plays an essential role in bone development; however, little is known about its effect on intestinal gene expression in juvenile animals. In the present study, thirty-two weaned pigs (9·5 (sem 0·11) kg) were assigned to four diets that differed in Ca concentration (adequate v. high) and cereal composition (wheat–barley v. maize) to assess the jejunal and colonic gene expression of nutrient transporters, tight junction proteins, cytokines and pathogen-associated molecular patterns, nutrient digestibility, Ca balance and serum acute-phase response. To estimate the impact of mucosal bacteria on colonic gene expression, Spearman's correlations between colonic gene expression and bacterial abundance were computed. Faecal Ca excretion indicated that more Ca was available along the intestinal tract of the pigs fed high Ca diets as compared to the pigs fed adequate Ca diets (P0·35; P< 0·05) indicated an association between operational taxonomic units assigned to the phyla Bacteroidetes, Firmicutes and Proteobacteria and bacterial metabolites and mucosal gene expression in the colon. The present results indicate that high Ca diets have the potential to modify the jejunal and colonic mucosal gene expression response which, in turn, interacts with the composition of the basal diet and mucosa-associated bacteria in weaned pigs

    Scrophularia striata Extract Supports Rumen Fermentation and Improves Microbial Diversity in vitro Compared to Monensin

    Get PDF
    In the search for natural alternatives to antibiotic feed additives, we compared the efficacy of two doses of Scrophularia striata extract [S. striata-Low at 40 and S. striata-High at 80 mg g-1 dry matter (DM)] with monensin (monensin) and a negative control in the modulation of rumen fermentation, methane production and microbial abundance in vitro. Microbes were investigated using qPCR and 16S rRNA targeted sequencing. Data showed that the addition of S. striata increased production of total short chain fatty acids (SCFA) in comparison to both monensin and control (P = 0.04). The addition of S. striata increased acetate production, and increased propionate at the higher dosage (P &lt; 0.001). Supplementation of S. striata lowered methane production (P &lt; 0.001) compared to control but with no effect compared to monensin. Ammonia concentration decreased by 52% (P &lt; 0.001) with S. striata-High supplementation (4.14 mmol L-1) compared to control, which was greater than that of monensin (36%). The diversity of rumen bacteria was reduced (P &lt; 0.001) for monensin and S. striata for both the number of observed OTUs and the Chao1 index. Quantitative analysis of Protozoa showed a decrease in the monensin treatment (P = 0.05) compared to control. Archaea copy numbers decreased equally in both S. striata-High and monensin treatments compared to the control group. Supplementation with S. striata increased relative abundances of Fibrobacteres (P &lt; 0.001) and Planctomycetes (P = 0.001) in comparison to both the control and monensin treatments. Significant negative correlations were observed between the abundances of Bacteroides, Fusobacterium, and Succinivibrio genera and methane (r &gt; -0.71; P ≤ 0.001). The abundance of Fibrobacter genera and total SCFA (r = 0.86), acetate (r = 0.75), and valerate (r = -0.51; P &lt; 0.001) correlated positively. These results suggest that S. striata supplementation at 80 mg g-1 DM inclusion, similar to monensin, supports rumen fermentation, lowers methane and ammonia production. However, S. striata supported rumen fermentation toward higher total SCFA and propionate production, while unlike monensin still supported a diverse rumen microbiome and an increase in cellulolytic bacteria such as Fibrobacter

    Feed Restriction Reveals Distinct Serum Metabolome Profiles in Chickens Divergent in Feed Efficiency Traits

    Get PDF
    Publication history: Accepted - 20 February 2019; Published - 25 February 2019.Restrictive feeding influences systemic metabolism of nutrients; however, this impact has not been evaluated in chickens of diverging feed efficiency. This study investigated the effect of ad libitum versus restrictive feeding (85% of ad libitum) on the serum metabolome and white blood cell composition in chickens of diverging residual feed intake (RFI; metric for feed efficiency). Blood samples were collected between days 33 and 37 post-hatch. While serum glucose was similar, serum uric acid and cholesterol were indicative of the nutritional status and chicken’s RFI, respectively. Feed restriction and RFI rank caused distinct serum metabolome profiles, whereby restrictive feeding also increased the blood lymphocyte proportion. Most importantly, 10 amino acids were associated with RFI rank in birds, whereas restrictive feeding affected almost all detected lysophosphatidylcholines, with 3 being higher and 6 being lower in restrictively compared to ad libitum fed chickens. As indicated by relevance networking, isoleucine, lysine, valine, histidine, and ornithine were the most discriminant for high RFI, whereas 3 biogenic amines (carnosine, putrescine, and spermidine) and 3 diacyl-glycerophospholipids (38:4, 38:5, and 40:5) positively correlated with feed intake and body weight gain, respectively. Only for taurine, feed intake mostly explained the RFI-associated variation, whereas for most metabolites, other host physiological factors played a greater role for the RFI-associated differences, and was potentially related to insulin-signaling, phospholipase A2, and arachidonic acid metabolism. Alterations in the hepatic synthesis of long-chain fatty acids and the need for precursors for gluconeogenesis due to varying energy demand may explain the marked differences in serum metabolite profiles in ad libitum and restrictively fed birds.This project (ECO-FCE) has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 311794

    Fecal Microbiota Transplant From Highly Feed Efficient Donors Affects Cecal Physiology and Microbiota in Low- and High-Feed Efficient Chickens

    Get PDF
    Publication history: Accepted - 25 June 2019; Published online - 9 July 2019Fecal microbiota transplants (FMT) may be used to improve chicken’s feed efficiency (FE) via modulation of the intestinal microbiota and microbe-host signaling. This study investigated the effect of the administration of FMT from highly feed efficient donors early in life on the jejunal and cecal microbiota, visceral organ size, intestinal morphology, permeability, and expression of genes for nutrient transporters, barrier function and innate immune response in chickens of diverging residual feed intake (RFI; a metric for FE). Chicks (n = 110) were inoculated with the FMT or control transplant (CT) on 1, 6, and 9 days posthatch (dph), from which 56 chickens were selected on 30 dph as the extremes in RFI, resulting in 15 low and 13 high RFI chickens receiving the FMT and 14 low and 14 high RFI chickens receiving the CT. RFI rank and FMT only caused tendencies for alterations in the jejunal microbiota and only one unclassified Lachnospiraceae genus in cecal digesta was indicative of high RFI. By contrast, the FMT caused clear differences in the short-chain fatty acid (SCFA) profile in the crop and cecal microbiota composition compared to the CT, which indicated alterations in amylolytic, pullulanolytic and hemicellulolytic bacteria such as Lactobacillus, Dorea, and Ruminococcus. Moreover, the FMT caused alterations in intestinal development as indicated by the longer duodenum and shallower crypts in the ceca. From the observed RFI-associated variation, energy-saving mechanisms and moderation of the mucosal immune response were indicated by higher jejunal permeability, shorter villi in the ileum, and enhanced cecal expression of the anti-inflammatory cytokine IL10 in low RFI chickens. Relationships obtained from supervised multigroup data integration support that certain bacteria, including Ruminococcocaceae-, Lactobacillus-, and unclassified Clostridiales-phylotypes, and SCFA in jejunal and cecal digesta modulated expression levels of cytokines, tight-junction protein OCLN and nutrient transporters for glucose and SCFA uptake. In conclusion, results suggest that the intestine only Frontiers in Microbiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1576 fmicb-10-01576 July 5, 2019 Time: 15:15 # 2 Metzler-Zebeli et al. Fecal Microbiota Transplant and Gut Functions played a moderate role for the RFI-associated variation of the present low and high RFI phenotypes, whereas modulating the early microbial colonization resulted in longlasting changes in bacterial taxonomic and metabolite composition as well as in host intestinal development.This project (ECO-FCE) has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under Grant Agreement No. 311794

    Fecal Microbiota Transplant from Highly Feed-Efficient Donors Shows Little Effect on Age-Related Changes in Feed-Efficiency-Associated Fecal Microbiota from Chickens

    Get PDF
    peer-reviewedChickens with good or poor feed efficiency (FE) have been shown to differ in their intestinal microbiota composition. This study investigated differences in the fecal bacterial community of highly and poorly feed-efficient chickens at 16 and 29 days posthatch (dph) and evaluated whether a fecal microbiota transplant (FMT) from feed-efficient donors early in life can affect the fecal microbiota in chickens at 16 and 29 dph and chicken FE and nutrient retention at 4 weeks of age. A total of 110 chickens were inoculated with a FMT or a control transplant (CT) on dph 1, 6, and 9 and ranked according to residual feed intake (RFI; the metric for FE) on 30 dph. Fifty-six chickens across both inoculation groups were selected as the extremes in RFI (29 low, 27 high). RFI-related fecal bacterial profiles were discernible at 16 and 29 dph. In particular, Lactobacillus salivarius, Lactobacillus crispatus, and Anaerobacterium operational taxonomic units were associated with low RFI (good FE). Multiple administrations of the FMT only slightly changed the fecal bacterial composition, which was supported by weighted UniFrac analysis, showing similar bacterial communities in the feces of both inoculation groups at 16 and 29 dph. Moreover, the FMT did not change the RFI and nutrient retention of highly and poorly feedefficient recipients, whereas it tended to increase feed intake and body weight gain in female chickens. This finding suggests that host- and environment-related factors may more strongly affect chicken fecal microbiota and FE than the FMT.European Union Seventh Framework Programm

    Forage particle size and forage preservation method modulate lying behaviour in dairy cows

    Get PDF
    It has been suggested that reducing forage particle size as well as feeding hay compared to silage may improve forage intake. Little is known, however, how such ration characteristics affect other aspects of cattle behaviour. Therefore, this study investigated the lying behaviour of cows in response to particle size reduction (LONG versus SHORT; Trial 1) and preservation method (SILAGE versus HAY; Trial 2) of forages which constituted ≥ 80% of the rations’ dry matter. Two feeding groups with 10 (Trial 1) and 9 Holstein cows each (Trial 2) received the experimental rations for approximately 5 weeks. Cows were housed in a free-stall barn with straw-bedded cubicles and rubberized floor in the alleys. Lying behaviour was recorded using HOBO Pendant® acceleration data loggers during the last 3 weeks of the experimental period as well as for 3 consecutive days during the week preceding the experiment, the latter serving as a baseline covariate to consider individual cow lying behaviour. SHORT-fed cows (Trial 1) had a longer daily lying time (+ 1.1 h/d; P = 0.003) and tended to have more lying bouts (+ 3.1; P = 0.090) than cows fed the LONG ration. In both groups, a preference towards the left lying side (57.4%) was observed. A similar pattern was observed for both groups with regard to rumination time while lying. Cows fed SILAGE or HAY (Trial 2) did not differ with regard to lying times (12.8 h/d). However, cows on HAY tended to lie less on the left side (- 1.1 h/d; P = 0.098) and had less lying bouts per day (- 2.5 bouts/d; P = 0.039). Consequently, these cows showed nearly an equal preference for the left and right lying side with 49.1% and 51.6%, respectively; whereas cows on SILAGE tended to prefer the left lying side (55.6%), also when ruminating. In contrast, cows on HAY tended to reduce rumination time on the left lying side (- 0.61 h/d; P = 0.079). Effects observed may be attributed to changes in eating behaviour as well as the amount of feed ingested in a given time period. Under the conditions investigated, time budgets for lying may be limited and changes of the forage characteristics (e.g. particle size reduction) could mitigate these constraints

    Feed Restriction Modifies Intestinal Microbiota-Host Mucosal Networking in Chickens Divergent in Residual Feed Intake

    Get PDF
    Publication history: Accepted online - 8 January 2019; Published online - 29 January 2019.Differences in chickens’ feed intake may be the underlying factor influencing feed-efficiency (FE)-associated variation in intestinal microbiota and physiology. In chickens eating the same amount of feed, quantitative feed restriction may create similar intestinal conditions and help clarify this cause-and-effect relationship. This study investigated the effect of ad libitum versus restrictive feeding (85% of ad libitum) on ileal and cecal microbiota, concentrations of short-chain fatty acids, visceral organ size, intestinal morphology, permeability, and expression of genes related to nutrient uptake, barrier function, and innate immune response in broiler chickens with divergent residual feed intake (RFI; metric for FE). On day 30 posthatch, 28 low-RFI (good FE) and 29 high-RFI (poor FE) chickens across both feedinglevel groups (n 112) were selected. Supervised multigroup data integration and relevance network analyses showed that especially Lactobacillus (negative) in ileal digesta, Turicibacter (positive) in cecal digesta, and Enterobacteriaceae (positive) in both intestinal segments depended on chicken’s feed intake, whereas the level of Anaerotruncus in cecal digesta was most discriminative for high RFI. Moreover, shallower crypts and fewer goblet cells in ceca indicated host-related energy-saving mechanisms with low RFI, whereas greater tissue resistance suggested a stronger jejunal barrier function in low-RFI chickens. Values corresponding to feed intake level RFI interactions indicated larger pancreas and lower levels of ileal and cecal short-chain fatty acids in restrictively fed high-RFI chickens than in the other 3 groups, suggesting host physiological adaptations to support greater energy and nutrient needs of high-RFI chickens compensating for the restricted feeding. IMPORTANCE The impact of the FE-associated differences in feed intake on intestinal bacterial and host physiological parameters has so far not been clarified. Understanding the underlying principles is essential for the development of cost-effective strategies to improve FE in chicken production. Under conditions of quantitative feed restriction, low- and high-RFI chickens ate the same amount of feed. Therefore, this research helps in distinguishing intestinal bacterial taxa and functions that were highly reliant on feed intake from those that were associated with physiological adaptations to RFI-associated differences in host nutritional needs and intestinal nutrient availability. This work provides a background for further research to assess manipulation of the intestinal microbiota, host physiology, and FE in chickens by dietary intervention.This project (ECO-FCE) has received funding from the European Union’s Seventh Framework Program for research, technological development, and demonstration under grant agreement 311794

    Feed Restriction Modulates the Fecal Microbiota Composition, Nutrient Retention, and Feed Efficiency in Chickens Divergent in Residual Feed Intake

    Get PDF
    Publication histroy: Accepted - 23 October 2018; Published - 19 November 2019.There is a great interest to understand the impact of the gut microbiota on host’s nutrient use and FE in chicken production. Both chicken’s feed intake and gut bacterial microbiota differ between high and low-feed efficient chickens. To evaluate the impact of the feed intake level on the feed efficiency (FE)-associated variation in the chicken intestinal microbiota, differently feed efficient chickens need to eat the same amount of feed, which can be achieved by feeding chickens restrictively. Therefore, we investigated the effect of restrictive vs. ad libitum feeding on the fecal microbiome at 16 and 29 days posthatch (dph), FE and nutrient retention in chickens of low and high residual feed intake (RFI; metric for FE). Restrictively fed chickens were provided the same amount of feed which corresponded to 85% of the ad libitum fed group from 9 dph. FE was determined for the period between 9 and 30 dph and feces for nutrient retention were collected on 31 to 32 dph. From the 112 chickens (n = 56 fed ad libitum, and n = 56 fed restrictively), 14 low RFI and 15 high RFI ad libitum fed chickens, and 14 low RFI (n = 7 per sex) and 14 high RFI restrictively fed chickens were selected as the extremes in RFI and were retrospectively chosen for data analysis. Bray-Curtis dissimilarity matrices showed significant separation between time points, and feeding level groups at 29 dph for the fecal bacterial communities. Relevance networking indicated positive associations between Acinetobacter and feed intake at 16 dph, whereas at 29 dph Escherichia/Shigella and Turicibacter positively and Lactobacillus negatively correlated to chicken’s feed intake. Enterobacteriaceae was indicative for low RFI at 16 dph, whereas Acinetobacter was linked to high RFI across time points. However, restrictive feeding-associated changes in the fecal microbiota were not similar in low and high RFI chickens, whichmay have been related to the higher nutrient retention and thus lower fecal nutrient availability in restrictively fed high RFI chickens. Thismay also explain the decreased RFI value in restrictively fed high RFI chickens indicating improved FE, with a stronger effect in females.This project (ECO-FCE) has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794
    • …
    corecore