14 research outputs found
Machine learning approach to evaluate TdP risk of drugs using cardiac electrophysiological model including inter-individual variability
Introduction: Predicting ventricular arrhythmia Torsade de Pointes (TdP) caused by drug-induced cardiotoxicity is essential in drug development. Several studies used single biomarkers such as qNet and Repolarization Abnormality (RA) in a single cardiac cell model to evaluate TdP risk. However, a single biomarker may not encompass the full range of factors contributing to TdP risk, leading to divergent TdP risk prediction outcomes, mainly when evaluated using unseen data. We addressed this issue by utilizing multi-in silico features from a population of human ventricular cell models that could capture a representation of the underlying mechanisms contributing to TdP risk to provide a more reliable assessment of drug-induced cardiotoxicity.Method: We generated a virtual population of human ventricular cell models using a modified O’Hara-Rudy model, allowing inter-individual variation. IC50 and Hill coefficients from 67 drugs were used as input to simulate drug effects on cardiac cells. Fourteen features (dVmdtrepol, dVmdtmax, Vmpeak, Vmresting, APDtri, APD90, APD50, Capeak, Cadiastole, Catri, CaD90, CaD50, qNet, qInward) could be generated from the simulation and used as input to several machine learning models, including k-nearest neighbor (KNN), Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN). Optimization of the machine learning model was performed using a grid search to select the best parameter of the proposed model. We applied five-fold cross-validation while training the model with 42 drugs and evaluated the model’s performance with test data from 25 drugs.Result: The proposed ANN model showed the highest performance in predicting the TdP risk of drugs by providing an accuracy of 0.923 (0.908–0.937), sensitivity of 0.926 (0.909–0.942), specificity of 0.921 (0.906–0.935), and AUC score of 0.964 (0.954–0.975).Discussion and conclusion: According to the performance results, combining the electrophysiological model including inter-individual variation and optimization of machine learning showed good generalization ability when evaluated using the unseen dataset and produced a reliable drug-induced TdP risk prediction system
OPTIMASI LOAD CELL 1 AXIS KAPASITAS 3 KN
Penelitian ini membahas 2 desain yaitu yang beralur dan tanpa alur, load cell 1 axis berkekuatan 3 kN untuk distribusi tegangan dan regangan. dari 2 desain tersebut dipilih yang regangan dan tegangannya lebih sensitif. Selanjutnya pemilihan bahan dan simulasi menggunakan metode elemen hingga dengan meberikan pembebanan 300 Mpa. Dari simulasi tersebut maka didapatkan desain yang beralur lebih baik kosentrasi tegangan yaitu 2.444 mv sedangkan tanpa alur lebih kecil nilainya 0,405mv. Maka dari itu yang beralur dilanjutkan untuk fabrikasi strain gauge. Pengunjian karakteristik didapatkan sensivitas 0,1018 mV/N, nilai fungsi linearitas y =0,1018x-0,1421, dengan nilai penyimpangan lineritas terbesar 0,75 mV (2,18%), simpangan histerisis tertinggi 1,43 N, nilai peyimpangan validasi -0,789 N dan tingkat akurasi hingga 99,70% . Dengan demikian load cell ini dapat digunakan pada mesin uji Tarik.Kata kunci: Load Cell 1 Axis, Analisa tegangan dan regangan, metode elemen hingga
Verification of the Efficacy of Mexiletine Treatment for the A1656D Mutation on Downgrading Reentrant Tachycardia Using a 3D Cardiac Electrophysiological Model
The SCN5A mutations have been long associated with long QT variant 3 (LQT3). Recent experimental and computation studies have reported that mexiletine effectively treats LQT3 patients associated with the A1656D mutation. However, they have primarily focused on cellular level evaluations and have only looked at the effects of mexiletine on action potential duration (APD) or QT interval reduction. We further investigated mexiletine’s effects on cardiac cells through simulations of single-cell (behavior of alternant occurrence) and 3D (with and without mexiletine). We discovered that mexiletine could shorten the cell’s APD and change the alternant’s occurrence to a shorter basic cycle length (BCL) between 350 and 420 ms. The alternant also appeared at a normal heart rate under the A1656D mutation. Furthermore, the 3D ventricle simulations revealed that mexiletine could reduce the likelihood of a greater spiral wave breakup in the A1656D mutant condition by minimizing the appearance of rotors. In conclusion, we found that mexiletine could provide extra safety features during therapy for LQT3 patients because it can change the alternant occurrence from a normal to a faster heart rate, and it reduces the chance of a spiral wave breakup. Therefore, these findings emphasize the promising efficacy of mexiletine in treating LQT3 patients under the A1656D mutation
Table1_Evaluation of cardiac pro-arrhythmic risks using the artificial neural network with ToR–ORd in silico model output.pdf
Torsades de pointes (TdP) is a type of ventricular arrhythmia that can lead to sudden cardiac death. Drug-induced TdP has been an important concern for researchers and international regulatory boards. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative was proposed that integrates in vitro testing and computational models of cardiac ion channels and human cardiomyocyte cells to evaluate the proarrhythmic risk of drugs. The TdP risk classification performance using only a single TdP metric may require some improvements because of information limitations and the instability of generalizing results. This study evaluates the performance of TdP metrics from the in silico simulations of the Tomek–O'Hara Rudy (ToR–ORd) ventricular cell model for classifying the TdP risk of drugs. We utilized these metrics as an input to an artificial neural network (ANN)-based classifier. The ANN model was optimized through hyperparameter tuning using the grid search (GS) method to find the optimal model. The study outcomes show an area under the curve (AUC) value of 0.979 for the high-risk category, 0.791 for the intermediate-risk category, and 0.937 for the low-risk category. Therefore, this study successfully demonstrates the capability of the ToR–ORd ventricular cell model in classifying the TdP risk into three risk categories, providing new insights into TdP risk prediction methods.</p