7 research outputs found

    Experimental and Analytical Characterization of Regenerated/nano Cellulose Composites

    Get PDF
    Fiber-reinforced composite materials are increasingly used for structural and engineering purposes. In particular, composites reinforced with natural fiber systems are becoming more and more popular due to their biodegradability and abundance; added to that other properties such as transparency, dimensional stability and good mechanical behavior. However, major issues remain to properly understand their behavior and enable their widespread use. In this thesis, the mechanical behavior of cellulose fiber/epoxy composites is investigated. The natural fiber systems studied fall into three categories: unidirectional regenerated cellulose fibers, triaxially braided quasi-isotropic regenerated cellulose fibers and micro-fibrillated cellulose in the form of nanocellulose scaffolds. Different methods of fabrication including wet layup, resin infusion, hot pressing and combinations of the three processes were investigated. Mechanical testing of tension coupons or three-point bending was performed to assess the mechanical behavior. When permitted, mechanical testing was accompanied by other validation techniques to help understand the mechanical behavior including digital image correlation (DIC) and acoustic emission. The effect of temperature and loading frequency on the mechanical behavior was also investigated by performing short beam testing using Dynamic Mechanical Analysis (DMA). Environmental effects, mainly the effect of moisture on the behavior of the fibers and the composites was also investigated. Additionally, the effect of the level of cure of the resin was found to have a detrimental effect on the mechanical behavior of the composites and was studied using DMA and Digital Scanning Calorimetry (DSC). Finally, the experimental results were extended and validated using numerical solutions and finite element simulations. Results show that thermal and mechanical properties are highly sensitive to the different factors being investigated; mainly humidity, temperature, manufacturing procedure and parameters, fiber content, as well as the level of curing of the epoxy

    The Psychological Impact of COVID-19 and Restrictive Measures in the World

    Full text link
    Background: In a short time, the COVID-19 pandemic turned into a global emergency. The fear of becoming infected and the lockdown measures have drastically changed people's daily routine. The aim of this study is to establish the psychological impact that the COVID-19 pandemic is entailing, particularly with regards to levels of stress, anxiety and depression, and to the risks of developing Post-Traumatic Stress Disorder (PTSD). Methods: The study, carried out with a sample of 1612 subjects distributed in seven countries (Australia, China, Ecuador, Iran, Italy, Norway and the United States), allowed us to collect information about the psychological impact of COVID-19. Results: The findings of this study show that the levels of stress, depression and anxiety, as well as the risks of PTSD, are higher than average in over half of the considered sample. The severity of these disorders significantly depends on gender, type of outdoor activities, characteristics of their homes, eventual presence of infected acquaintances, time dedicated to looking for related information (in the news and social networks), type of source information and, in part, to the level of education and income. Conclusions: We conclude that COVID-19 has a very strong psychological impact on the global population. This appears to be linked to the coping strategies adopted, level of mindful awareness, socio-demographic variables, people's habits and the way individuals use means of communication and information

    Review of Improved Subgrade and Stabilized Subbases to Evaluate Performance of Concrete Pavements

    Get PDF
    This report presents findings on the evaluation of foundation layers under concrete pavements in the state of Illinois. It also provides recommendations and scenarios where unbound granular layers can be safely used under concrete pavements as economical and well-performing subbase layers. The current practice and mechanistic design methods for constructing concrete pavements in Illinois was first evaluated, including historical studies that led to the current design procedures and policies. The performance of concrete pavements with unbound granular layers in Illinois were then evaluated, and several case studies of well-performing concrete pavements with granular subbases, high traffic levels, and low distress levels and severity were realized. Next, the practices of surrounding states were evaluated, and several Midwest states, i.e., Wisconsin, Minnesota, Iowa, and Michigan, were found to regularly use unbound granular layers under concrete pavements with no issues. A literature review on the most recent requirements and recommendations for designing granular subbases under concrete pavements was then presented. It is concluded that subbase layers under concrete pavements are mainly used to provide uniform support and prevent pumping. Based on the case study evaluations and literature, a stable, drainable, and durable daylighted granular subbase design is recommended for traffic factors up to 10.0. Stability is ensured by limiting the ratio of gravel-to-sand fractions in the aggregate mix between 1.3 and 1.9. Drainability requirements can be met by limiting the percentage of fines passing the No. 200 sieve (0.075 mm) to 4% and by checking the quality of drainage is at least fair based on the time required to drain 50% of the water. Lastly, a geotextile fabric is recommended for use below the granular subbase for separation to ensure drainability throughout design life.IDOT-ICT-193-5Ope

    Steel Slag Aggregate Characteristics Evaluation as Railway Ballast

    No full text
    The use of recycled materials is a new tendency in the field of railway engineering. Steel slag aggregates (SSA) are one of the recycled materials derived from the steel industry. The application of SSA in ballasted railway tracks requires mechanical examination. In the present paper, the shear behavior of the ballast layer constructed by SSA and basalt aggregates was considered to assess the use of SSA as a substitution for basalt. In this regard, a series of large-direct shear tests were performed on basalt and SSA under various normal stresses. Based on the results, basalt aggregates have higher shear resistance than SSA for all normal stress. However, steel slag has sufficient shear strength as well as particle abrasion resistance. Overall, it was proven that the SSA has suitable stability against shear forces that could be applied on railway ballast.</p
    corecore