80 research outputs found

    Staggered Dynamics in Antiferromagnets by Collective Coordinates

    Get PDF
    Antiferromagnets can be used to store and manipulate spin information, but the coupled dynamics of the staggered field and the magnetization are very complex. We present a theory which is conceptually much simpler and which uses collective coordinates to describe staggered field dynamics in antiferromagnetic textures. The theory includes effects from dissipation, external magnetic fields, as well as reactive and dissipative current-induced torques. We conclude that, at low frequencies and amplitudes, currents induce collective motion by means of dissipative rather than reactive torques. The dynamics of a one-dimensional domain wall, pinned at 90∘^{\circ} at its ends, are described as a driven harmonic oscillator with a natural frequency inversely proportional to the length of the texture.Comment: 4 pages, 2 figure

    The Medicine Line: A Border Dividing Tribal Sovereignty, Economies and Families

    Get PDF
    Contains fulltext : 194983.pdf (publisher's version ) (Open Access)7 p

    Generation of single skyrmions by picosecond magnetic field pulses

    Full text link
    We numerically demonstrate an ultrafast method to create single\textit{single} skyrmions in a collinear\textit{collinear} ferromagnetic sample by applying a picosecond (effective) magnetic field pulse in the presence of Dzyaloshinskii-Moriya interaction. For small samples the applied magnetic field pulse could be either spatially uniform or nonuniform while for large samples a nonuniform and localized field is more effective. We examine the phase diagram of pulse width and amplitude for the nucleation. Our finding could ultimately be used to design future skyrmion-based devices.Comment: 4.5 pages+Supplemental Materia

    Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets

    Get PDF
    In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral N\'eel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.Comment: 4.5 pages+references, 4 figure

    Ground-state properties of gapped graphene using the random phase approximation

    Full text link
    We study the effect of band gap on the ground-state properties of Dirac electrons in a doped graphene within the random phase approximation at zero temperature. Band gap dependence of the exchange, correlation and ground-state energies and the compressibility are calculated. We additionally show that the conductance in the gapped graphene is smaller than gapless one. We also calculate the band gap dependence of charge compressibility and it decreases with increasing the band gap values.Comment: 11 pages, Final version. To appear in Phys. Rev.
    • …
    corecore