46 research outputs found
Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment
Time-resolved U(VI) laser fluorescence spectra (TRLFS) were recorded for a series of natural uranium-silicate minerals including boltwoodite, uranophane, soddyite, kasolite, sklodowskite, cuprosklodowskite, haiweeite, and weeksite, a synthetic boltwoodite, and four U(VI)-contaminated Hanford vadose zone sediments. Lowering the sample temperature from RT to ~5.5 K significantly enhanced the fluorescence intensity and spectral resolution of both the minerals and sediments, offering improved possibilities for identifying uranyl species in environmental samples. At 5.5 K, all of the uranyl silicates showed unique, well-resolved fluorescence spectra. The symmetric O = U = O stretching frequency, as determined from the peak spacing of the vibronic bands in the emission spectra, were between 705 to 823 cm−1 for the uranyl silicates. These were lower than those reported for uranyl phosphate, carbonate, or oxy-hydroxides. The fluorescence emission spectra of all four sediment samples were similar to each other. Their spectra shifted minimally at different time delays or upon contact with basic Na/Ca-carbonate electrolyte solutions that dissolved up to 60% of the precipitated U(VI) pool. The well-resolved vibronic peaks in the fluorescence spectra of the sediments indicated that the major fluorescence species was a crystalline uranyl mineral phase, while the peak spacing of the vibronic bands pointed to the likely presence of uranyl silicate. Although an exact match was not found between the U(VI) fluorescence spectra of the sediments with that of any individual uranyl silicates, the major spectral characteristics indicated that the sediment U(VI) was a uranophane-type solid (uranophane, boltwoodite) or soddyite, as was concluded from microprobe, EXAFS, and solubility analyses
A coupled microscopy approach to assess the nano-landscape of weathering
Mineral weathering is a balanced interplay among physical, chemical, and biological processes. Fundamental knowledge gaps exist in characterizing the biogeochemical mechanisms that transform microbe-mineral interfaces at submicron scales, particularly in complex field systems. Our objective was to develop methods targeting the nanoscale by using high-resolution microscopy to assess biological and geochemical drivers of weathering in natural settings. Basalt, granite, and quartz (53-250 mu m) were deployed in surface soils (10 cm) of three ecosystems (semiarid, subhumid, humid) for one year. We successfully developed a reference grid method to analyze individual grains using: (1) helium ion microscopy to capture micron to sub-nanometer imagery of mineral-organic interactions; and (2) scanning electron microscopy to quantify elemental distribution on the same surfaces via element mapping and point analyses. We detected locations of biomechanical weathering, secondary mineral precipitation, biofilm formation, and grain coatings across the three contrasting climates. To our knowledge, this is the first time these coupled microscopy techniques were applied in the earth and ecosystem sciences to assess microbe-mineral interfaces and in situ biological contributors to incipient weathering.Oregon State University faculty startup fund; Office of Biological and Environmental Research; NSF [EAR-GEO-1331846, EAR-0724958, IOS-1354219]; [EAR-1023215]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Influence of time and ageing conditions on the properties of ferrihydrite
Natural conversion of ferrihydrite (Fh), a widespread Fe(iii)-oxyhydroxide mineral at the Earth's surface, to thermodynamically more stable iron oxides such as goethite (Gt) and hematite (Hm) is a slow process that spans months to years. Here we examined the effects of synthesis and storage conditions on the hydration, the ratio of tetrahedral to octahedral iron sites, and the transformation of naturally aged 2-line Fh at room temperature and mildly acidic pH over an ageing period of 5 years. Fh samples synthesized and aged in either aerobic or anaerobic conditions were characterized over time by XRD, SEM, thermogravimetric analysis - mass spectroscopy (TGA-MS), and X-ray absorption spectroscopies (XANES and XMCD). The findings show that the ratio of tetrahedral to octahedral Fe(iii) sites in Fh is correlated to its extent of hydration, with fresher Fh samples exhibiting a higher ratio and more bound water. Fresh Fh aged in aerobic conditions has similar bound inorganic carbon, is more hydrated, and has less tetrahedral Fe(iii) than that aged in anaerobic conditions. Hence, for relatively fresh Fh there is a link between Fh properties and storage conditions. However, the long-term ageing characteristics, such as the transformation rate and relative phase fraction of Gt and Hm products, are not noticeably impacted by storage conditions. TGA-MS measurements coupled with O K-edge XANES spectra confirm that Fh tends to lose its hydration as it ages, as expected. Corresponding Fe L2,3-edge XMCD spectra reveal that this dehydration is coupled to a steady decrease in the ratio of tetrahedral to octahedral Fe(iii) sites. In addition to the obvious constraints these findings place on making comparisons across Fh samples of different age and environmental settings, they also highlight that Fh structure, and consequently magnetism, are linked to its bound water content
Effect of Temperature on Cs+ Sorption and Desorption in Subsurface Sediments at the Hanford Site, U.S.A.
The effects of temperature on Cs+ sorption and desorption were investigated in subsurface sediments from the U.S. Department of Energy Hanford Site. The site has been contaminated at several locations by the accidental leakage of high-level nuclear waste (HLW) containing 137Cs+. The high temperature of the self-boiling, leaked HLW fluid and the continuous decay of various radionuclides carried by the waste supernatant have resulted in elevated vadose temperatures (currently up to 72 °C) below the Hanford S-SX tank farm that have dissipated slowly from the time of leakage (1970). The effect of temperature on Cs+ sorption was evaluated through batch binary Cs+- Na+ exchange experiments on pristine sediments, while Cs+ desorption was studied in column experiments using 137Cs+- contaminated sediments. Cs+ adsorption generally decreased with increasing temperature, with a more apparent decrease at low aqueous Cs+ concentration (10-10- 10-6 mol/L). Cs+ desorption from the contaminated sediments increased with increasing temperature. The results indicated that the free energy of Na+-Cs+ exchange on the Hanford sediment had a significant enthalpy component that was estimated to be -17.87 (±2.01) and -4.82 (±0.44) kJ/mol (at 298 °C) for the high- and low-affinity exchange sites, respectively. Both Cs+ adsorption and desorption at elevated temperature could be well simulated by a two-site ion exchange model, with the conditional exchange constants corrected by the exchange enthalpy effect. The effect of temperature on Cs+ desorption kinetics was also evaluated using a stop-flow technique. The kinetics of desorption of the exchangeable pool (which was less than the total adsorbed concentration) were found to be rapid under the conditions studied
Kinetic Desorption and Sorption of U(VI) during Reactive Transport in a Contaminated Hanford Sediment
Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)- contaminated (22.7 µmol kg-1) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium- (VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled
Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA
The dissolution of uranium was investigated from contaminated sediments obtained at the US. Department of Energy (U.S. DOE) Hanford site. The uranium existed in the sediments as uranyl silicate microprecipitates in fractures, cleavages, and cavities within sediment grains. Uranium dissolution was studied in Na, Na-Ca, and NH4 electrolytes with pH ranging from 7.0 to 9.5 under ambient CO2 pressure. The rate and extent of uranium dissolution was influenced by uranyl mineral solubility, carbonate concentration, and mass transfer rate from intraparticle regions. Dissolved uranium concentration reached constant values within a month in electrolytes below pH 8.2, whereas concentrations continued to rise for over 200 d at pH 9.0 and above. The steady-state concentrations were consistent with the solubility of Na-boltwoodite and/or uranophane, which exhibit similar solubility under the experimental conditions. The uranium dissolution rate increased with increasing carbonate concentration, and was initially fast. It decreased with time as solubility equilibrium was attained, or dissolution kinetics or mass transfer rate from intraparticle regions became rate-limiting. Microscopic observations indicated that uranium precipitates were distributed in intragrain microfractures with variable sizes and connectivity to particle surfaces. Laser-induced fluorescence spectroscopic change of the uranyl microprecipitates was negligible during the long-term equilibration, indicating that uranyl speciation was not changed by dissolution. A kinetic model that incorporated mineral dissolution kinetics and grain-scale, fracture-matrix diffusion was developed to describe uranium release rate from the sediment. Model calculations indicated that 50–95% of the precipitated uranium was associated with fractures that were in close contact with the aqueous phase. The remainder of the uranium was deeply imbedded in particle interiors and exhibited effective diffusivities that were over three orders of magnitude lower than those in the fractures