7 research outputs found

    Black hole algorithm along edge detector and circular hough transform based iris projection with biometric identification systems

    Get PDF
    The circular parameters between the pupil and the iris are found using current iris identification techniques but the accuracy creates an issue for the detection process during image processing. The procedure of extracting the iris region from an eye image using circular parameters can be improved via approximately too many approaches in literature but remain some portions under slightly unconstrained circumstances. In this study, we presented a Black Hole Algorithm (BHA) along the Canny edge detector and circular Hough transform-based optimization technique for circular parameter identification of iris segmentation. The iris boundary is discovered using the suggested segmentation approach and a computational model of the pixel value. The BHA looks for the central radius of the iris and pupil. The system uses MATLAB to test the CASIA-V3 database. The segmented images exhibit 98.71% accuracy. For all future access control applications, the segmentation-based BHA is effective at identifying the iris. The integration of the BHA with the Hough transforms and Canny edge detector is the main method by which the iris segmentation is accomplished. This novel technique improves the accuracy and effectiveness of iris segmentation, with potential uses in image analysis and biometric identification

    Black hole algorithm along edge detector and circular hough transform based iris projection with biometric identification systems

    No full text
    The circular parameters between the pupil and the iris are found using current iris identification techniques but the accuracy creates an issue for the detection process during image processing. The procedure of extracting the iris region from an eye image using circular parameters can be improved via approximately too many approaches in literature but remain some portions under slightly unconstrained circumstances. In this study, we presented a Black Hole Algorithm (BHA) along the Canny edge detector and circular Hough transform-based optimization technique for circular parameter identification of iris segmentation. The iris boundary is discovered using the suggested segmentation approach and a computational model of the pixel value. The BHA looks for the central radius of the iris and pupil. The system uses MATLAB to test the CASIA-V3 database. The segmented images exhibit 98.71% accuracy. For all future access control applications, the segmentation-based BHA is effective at identifying the iris. The integration of the BHA with the Hough transforms and Canny edge detector is the main method by which the iris segmentation is accomplished. This novel technique improves the accuracy and effectiveness of iris segmentation, with potential uses in image analysis and biometric identification

    Framework of Meta-Heuristic Variable Length Searching for Feature Selection in High-Dimensional Data

    No full text
    Feature Selection in High Dimensional Space is a combinatory optimization problem with an NP-hard nature. Meta-heuristic searching with embedding information theory-based criteria in the fitness function for selecting the relevant features is used widely in current feature selection algorithms. However, the increase in the dimension of the solution space leads to a high computational cost and risk of convergence. In addition, sub-optimality might occur due to the assumption of a certain length of the optimal number of features. Alternatively, variable length searching enables searching within the variable length of the solution space, which leads to more optimality and less computational load. The literature contains various meta-heuristic algorithms with variable length searching. All of them enable searching in high dimensional problems. However, an uncertainty in their performance exists. In order to fill this gap, this article proposes a novel framework for comparing various variants of variable length-searching meta-heuristic algorithms in the application of feature selection. For this purpose, we implemented four types of variable length meta-heuristic searching algorithms, namely VLBHO-Fitness, VLBHO-Position, variable length particle swarm optimization (VLPSO) and genetic variable length (GAVL), and we compared them in terms of classification metrics. The evaluation showed the overall superiority of VLBHO over the other algorithms in terms of accomplishing lower fitness values when optimizing mathematical functions of the variable length type

    Feature Encoding and Selection for Iris Recognition Based on Variable Length Black Hole Optimization

    No full text
    Iris recognition as a biometric identification method is one of the most reliable biometric human identification methods. It exploits the distinctive pattern of the iris area. Typically, several steps are performed for iris recognition, namely, pre-processing, segmentation, normalization, extraction, coding and classification. In this article, we present a novel algorithm for iris recognition that includes in addition to iris features extraction and coding the step of feature selection. Furthermore, it enables selecting a variable length of features for iris recognition by adapting our recent algorithm variable length black hole optimization (VLBHO). It is the first variable length feature selection for iris recognition. Our proposed algorithm enables segments-based decomposition of features according to their relevance which makes the optimization more efficient in terms of both memory and computation and more promising in terms of convergence. For classification, the article uses the famous support vector machine (SVM) and the Logistic model. The proposed algorithm has been evaluated based on two iris datasets, namely, IITD and CASIA. The finding is that optimizing feature encoding and selection based on VLBHO is superior to the benchmarks with an improvement percentage of 0.21%

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    corecore