112 research outputs found

    A Wideband Differentially Fed Dual-Polarized Antenna with Stable Radiation Pattern for Base Stations

    Get PDF
    © 1963-2012 IEEE. A new wideband differentially fed dual-polarized antenna with stable radiation pattern for base stations is proposed and studied. A cross-shaped feeding structure is specially designed to fit the differentially fed scheme and four parasitic loop elements are employed to achieve a wide impedance bandwidth. A stable antenna gain and a stable radiation pattern are realized by using a rectangular cavity-shaped reflector instead of a planar one. A detailed parametric study was performed to optimize the antenna's performances. After that, a prototype was fabricated and tested. Measured results show that the antenna achieves a wide impedance bandwidth of 52% with differential standing-wave ratio <1.5 from 1.7 to 2.9 GHz and a high differential port-to-port isolation of better than 26.3 dB within the operating frequency bandwidth. A stable antenna gain (≈8 dBi) and a stable radiation pattern with 3-dB beamwidth of 65° ±5° were also found over the operating frequencies. Moreover, the proposed antenna can be easily built by using printed circuit board fabrication technique due to its compact and planar structure

    Dynamic large deformation analysis of a cantilever beam

    Get PDF
    National Natural Science Foundation of Chin

    Differential Proteomic Analysis of Platelets Suggested Possible Signal Cascades Network in Platelets Treated with Salvianolic Acid B

    Get PDF
    Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear.In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca²+ and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets.Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca²+ level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets

    Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR

    Get PDF
    Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen

    The detector system of the Daya Bay reactor neutrino experiment

    Get PDF
    postprin
    corecore